RAMSEY GOODNESS OF BOUNDED DEGREE TREES

Igor Balla

Department of Mathematics, ETH Zürich

Joint work with: Alexey Pokrovskiy, Benny Sudakov

Complete graph on N vertices

Complete graph on N vertices

 $R(K_3, K_3) = 6$

Complete graph on N vertices

Theorem (Ramsey 1930): $R(K_n, K_n)$ is well defined.

Complete graph on N vertices

Theorem (Ramsey 1930): $R(K_n, K_n)$ is well defined.

Theorem (Erdős 1947; Erdős and Szekeres 1935):

 $\left(\sqrt{2}\right)^n \le R(K_n, K_n) \le 4^n$

Theorem (Erdős 1947): $R(P_n, K_m) = (n-1)(m-1) + 1$

Path with n vertices

Theorem (Erdős 1947): $R(P_n, K_m) = (n-1)(m-1) + 1$

Path with n vertices

Theorem (Chvatal 1977): $R(T_n, K_m) = (n-1)(m-1) + 1$

Tree with n vertices

Theorem (Erdős 1947): $R(P_n, K_m) = (n-1)(m-1) + 1$

Path with n vertices

Theorem (Chvatal 1977): $R(T_n, K_m) = (n-1)(m-1) + 1$

Tree with n vertices

Lower bound construction:

m - 1

• $\chi(H) =$ smallest number of colors in a proper coloring of H• $\sigma(H) =$ minimum size of a color class in a $\chi(H)$ -coloring of H

- $\chi(H) = \text{smallest number of colors in a proper coloring of } H$
- $\sigma(H) = \text{minimum size of a color class in a } \chi(H)$ -coloring of H

Theorem (Burr 1981): For any connected G with $|G| \ge \sigma(H)$

 $R(G, H) \ge (|G| - 1)(\chi(H) - 1) + \sigma(H)$

• $\chi(H) =$ smallest number of colors in a proper coloring of H • $\sigma(H) =$ minimum size of a color class in a $\chi(H)$ -coloring of H**Theorem** (Burr 1981): For any connected G with $|G| \ge \sigma(H)$ $R(G, H) \ge (|G| - 1)(\chi(H) - 1) + \sigma(H)$ $\chi(H)-1$ **Proof:** |G| - 1 |G| - 1 $|G| - 1 \quad \sigma(H) - 1$

• $\chi(H) =$ smallest number of colors in a proper coloring of H • $\sigma(H) =$ minimum size of a color class in a $\chi(H)$ -coloring of H**Theorem** (Burr 1981): For any connected G with $|G| \ge \sigma(H)$ $R(G, H) \ge (|G| - 1)(\chi(H) - 1) + \sigma(H)$ $\chi(H)-1$ **Proof:** $|G|-1 \quad \sigma(H)-1$ |G| - 1 |G| - 1

Definition: A graph G is called H-good if equality holds above.

$$R(P_n, H) = (n - 1)(\chi(H) - 1) + \sigma(H)$$

$$R(P_n, H) = (n - 1)(\chi(H) - 1) + \sigma(H)$$

• Proven when $n \ge 4|H|$ (Pokrovskiy and Sudakov 2016).

$$R(P_n, H) = (n - 1)(\chi(H) - 1) + \sigma(H)$$

• Proven when $n \ge 4|H|$ (Pokrovskiy and Sudakov 2016).

Theorem (Erdős, Faudree, Rousseau, Schelp 1985): For any graph Hand Δ , there exists n_0 such that for all $n \ge n_0$, any tree T on nvertices with max degree Δ satisfies $R(T, H) = (n - 1)(\chi(H) - 1) + \sigma(H).$

$$R(P_n, H) = (n - 1)(\chi(H) - 1) + \sigma(H)$$

• Proven when $n \ge 4|H|$ (Pokrovskiy and Sudakov 2016).

Theorem (Erdős, Faudree, Rousseau, Schelp 1985): For any graph Hand Δ , there exists n_0 such that for all $n \ge n_0$, any tree T on nvertices with max degree Δ satisfies $R(T, H) = (n - 1)(\chi(H) - 1) + \sigma(H).$

Thinking of Δ , $\chi(H)$ as constants, their methods can at best give $n_0 = \Omega(|H|^4)$.

$$R(P_n, H) = (n - 1)(\chi(H) - 1) + \sigma(H)$$

• Proven when $n \ge 4|H|$ (Pokrovskiy and Sudakov 2016).

Theorem (Erdős, Faudree, Rousseau, Schelp 1985): For any graph Hand Δ , there exists n_0 such that for all $n \ge n_0$, any tree T on nvertices with max degree Δ satisfies $R(T, H) = (n - 1)(\chi(H) - 1) + \sigma(H).$

Thinking of Δ , $\chi(H)$ as constants, their methods can at best give $n_0 = \Omega(|H|^4)$.

Theorem (B., Pokrovskiy, Sudakov 2016): The above theorem holds for $n_0 = \Omega(|H| \log^4 |H|)$.

Proof Ideas		

For simplicity lets consider $H = K_{m,m}$ the complete bipartite

graph with m vertices in each part.

For simplicity lets consider $H = K_{m,m}$ the complete bipartite graph with m vertices in each part.

Q: If we have a red-blue complete graph on n - 1 + m vertices and the blue graph has no copy of $K_{m,m}$, what can we say about the red graph?

For simplicity lets consider $H = K_{m,m}$ the complete bipartite graph with m vertices in each part.

Q: If we have a red-blue complete graph on n - 1 + m vertices and the blue graph has no copy of $K_{m,m}$, what can we say about the red graph?

A: The red graph is an expander! (almost)

For simplicity lets consider $H = K_{m,m}$ the complete bipartite graph with m vertices in each part.

Q: If we have a red-blue complete graph on n - 1 + m vertices and the blue graph has no copy of $K_{m,m}$, what can we say about the red graph?

A: The red graph is an expander! (almost) For any set S of m vertices, $|N(S)| \ge n - m$.

For simplicity lets consider $H = K_{m,m}$ the complete bipartite graph with m vertices in each part.

Q: If we have a red-blue complete graph on n - 1 + m vertices and the blue graph has no copy of $K_{m,m}$, what can we say about the red graph?

A: The red graph is an expander! (almost) For any set S of m vertices, $|N(S)| \ge n - m$.

Theorem (Haxell 2001): In an expander on n vertices, we can find any bounded degree tree on .99n vertices.

For simplicity lets consider $H = K_{m,m}$ the complete bipartite graph with m vertices in each part.

Q: If we have a red-blue complete graph on n - 1 + m vertices and the blue graph has no copy of $K_{m,m}$, what can we say about the red graph?

A: The red graph is an expander! (almost) For any set S of m vertices, $|N(S)| \ge n - m$.

Theorem (Haxell 2001): In an expander on n vertices, we can find any bounded degree tree on .99n vertices.

Theorem (Montgomery 2014): For any tree T on n vertices with max degree Δ , the random graph $G(n, \Delta \log^5 n/n)$ almost surely contains a copy of T.

Conjecture: For any tree T on n vertices with max degree Δ , and any graph H with $n \ge O(\Delta |H|)$, $R(T, H) = (n - 1)(\chi(H) - 1) + \sigma(H).$ Conjecture: For any tree T on n vertices with max degree Δ , and any graph H with $n \ge O(\Delta |H|)$, $R(T, H) = (n - 1)(\chi(H) - 1) + \sigma(H).$

We can prove it for trees with linearly many leaves.

Conjecture: For any tree T on n vertices with max degree Δ , and any graph H with $n \ge O(\Delta |H|)$, $R(T, H) = (n - 1)(\chi(H) - 1) + \sigma(H).$

We can prove it for trees with linearly many leaves.

