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Theorem (Chvatal 1977):

Path with n vertices
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Lower bound construction: . . .

z}|{m� 1
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Definition: A graph     is called    -good if equality holds above.G H

Proof:                 
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Theorem (B., Pokrovskiy, Sudakov 2016): The above theorem holds 
for n0 = ⌦(|H| log4 |H|).
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Theorem (Montgomery 2014): For any tree      on     vertices with 
max degree     , the random graph                                almost 
surely contains a copy of    .

G(n,� log

5 n/n)
T n

�
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Conjecture: For any tree      on     vertices with max degree     , 
and any graph      with                         ,

T n �
H

R(T,H) = (n� 1)(�(H)� 1) + �(H).

Thank you.

n � O(�|H|)

• We can prove it for trees with linearly many leaves.


