RAMSEY GOODNESS OF BOUNDED DEGREE TREES

Igor Balla

Department of Mathematics, ETH Zürich

Joint work with: Alexey Pokrovskiy, Benny Sudakov

Ramsey number: $R(G, H)$ is the minimum N such that any red-blue coloring of K_{N} contains either a red copy of G or a blue copy of H.

Complete graph on N vertices

Ramsey number: $R(G, H)$ is the minimum N such that any red-blue coloring of K_{N} contains either a red copy of G or a blue copy of H.

Complete graph on N vertices

$$
R\left(K_{3}, K_{3}\right)=6
$$

Ramsey number: $R(G, H)$ is the minimum N such that any red-blue coloring of K_{N} contains either a red copy of G or a blue copy of H.

Complete graph on N vertices

$$
R\left(K_{3}, K_{3}\right)=6
$$

Theorem (Ramsey 1930): $R\left(K_{n}, K_{n}\right)$ is well defined.

Ramsey number: $R(G, H)$ is the minimum N such that any red-blue coloring of K_{N} contains either a red copy of G or a blue copy of H.

Complete graph on N vertices

$$
R\left(K_{3}, K_{3}\right)=6
$$

Theorem (Ramsey 1930): $R\left(K_{n}, K_{n}\right)$ is well defined.

Theorem (Erdős 1947; Erdős and Szekeres 1935):

$$
(\sqrt{2})^{n} \leq R\left(K_{n}, K_{n}\right) \leq 4^{n}
$$

Theorem (Erdős 1947): $R\left(P_{4}, K_{m}\right)=(n-1)(m-1)+1$

Path with n vertices

Theorem (Erdős 1947): $R\left(P_{n}, K_{m}\right)=(n-1)(m-1)+1$
Path with n vertices

Theorem (Chvatal 1977): $R\left(T_{n}, K_{m}\right)=(n-1)(m-1)+1$
Tree with n vertices

Theorem (Erdős 1947): $R\left(P_{n}, K_{m}\right)=(n-1)(m-1)+1$ Path with n vertices

Theorem (Chvatal 1977): $R\left(T_{n}, K_{m}\right)=(n-1)(m-1)+1$ Tree with n vertices

Lower bound construction:

Ramsey Goodness

Ramsey Goodness

- $\chi(H)=$ smallest number of colors in a proper coloring of H
- $\sigma(H)=$ minimum size of a color class in a $\chi(H)$-coloring of H

Ramsey Goodness

- $\chi(H)=$ smallest number of colors in a proper coloring of H
- $\sigma(H)=$ minimum size of a color class in a $\chi(H)$-coloring of H

Theorem (Burr 1981): For any connected G with $|G| \geq \sigma(H)$

$$
R(G, H) \geq(|G|-1)(\chi(H)-1)+\sigma(H)
$$

Ramsey Goodness

- $\chi(H)=$ smallest number of colors in a proper coloring of H
- $\sigma(H)=$ minimum size of a color class in a $\chi(H)$-coloring of H

Theorem (Burr 1981): For any connected G with $|G| \geq \sigma(H)$

$$
R(G, H) \geq(|G|-1)(\chi(H)-1)+\sigma(H)
$$

Proof:

Ramsey Goodness

- $\chi(H)=$ smallest number of colors in a proper coloring of H
- $\sigma(H)=$ minimum size of a color class in a $\chi(H)$-coloring of H

Theorem (Burr 1981): For any connected G with $|G| \geq \sigma(H)$

$$
R(G, H) \geq(|G|-1)(\chi(H)-1)+\sigma(H)
$$

Proof:

$$
\chi(H)-1
$$

$$
|G|-1 \quad|G|-1 \quad|G|-1 \quad \sigma(H)-1
$$

Definition: A graph G is called H-good if equality holds above.

Conjecture (Allen, Brightwell, and Skokan 2013): For $n \geq \chi(H)|H|$

$$
R\left(P_{n}, H\right)=(n-1)(\chi(H)-1)+\sigma(H)
$$

Conjecture (Allen, Brightwell, and Skokan 2013): For $n \geq \chi(H)|H|$

$$
R\left(P_{n}, H\right)=(n-1)(\chi(H)-1)+\sigma(H)
$$

-Proven when $n \geq 4|H|$ (Pokrovskiy and Sudakov 2016).

Conjecture (Allen, Brightwell, and Skokan 2013): For $n \geq \chi(H)|H|$

$$
R\left(P_{n}, H\right)=(n-1)(\chi(H)-1)+\sigma(H)
$$

-Proven when $n \geq 4|H|$ (Pokrovskiy and Sudakov 2016).

Theorem (Erdős, Faudree, Rousseau, Schelp 1985): For any graph H and Δ, there exists n_{0} such that for all $n \geq n_{0}$, any tree T on n vertices with max degree Δ satisfies

$$
R(T, H)=(n-1)(\chi(H)-1)+\sigma(H)
$$

Conjecture (Allen, Brightwell, and Skokan 2013): For $n \geq \chi(H)|H|$

$$
R\left(P_{n}, H\right)=(n-1)(\chi(H)-1)+\sigma(H)
$$

-Proven when $n \geq 4|H|$ (Pokrovskiy and Sudakov 2016).

Theorem (Erdős, Faudree, Rousseau, Schelp 1985): For any graph H and Δ, there exists n_{0} such that for all $n \geq n_{0}$, any tree T on n vertices with max degree Δ satisfies

$$
R(T, H)=(n-1)(\chi(H)-1)+\sigma(H)
$$

Thinking of $\Delta, \chi(H)$ as constants, their methods can at best give $n_{0}=\Omega\left(|H|^{4}\right)$.

Conjecture (Allen, Brightwell, and Skokan 2013): For $n \geq \chi(H)|H|$

$$
R\left(P_{n}, H\right)=(n-1)(\chi(H)-1)+\sigma(H)
$$

-Proven when $n \geq 4|H|$ (Pokrovskiy and Sudakov 2016).

Theorem (Erdős, Faudree, Rousseau, Schelp 1985): For any graph H and Δ, there exists n_{0} such that for all $n \geq n_{0}$, any tree T on n vertices with max degree Δ satisfies

$$
R(T, H)=(n-1)(\chi(H)-1)+\sigma(H)
$$

Thinking of $\Delta, \chi(H)$ as constants, their methods can at best give $n_{0}=\Omega\left(|H|^{4}\right)$.

Theorem (B., Pokrovskiy, Sudakov 2016): The above theorem holds for $n_{0}=\Omega\left(|H| \log ^{4}|H|\right)$.

Proof Ideas

Proof Ideas

For simplicity lets consider $H=K_{m, m}$ the complete bipartite graph with m vertices in each part.

Proof Ideas

For simplicity lets consider $H=K_{m, m}$ the complete bipartite graph with m vertices in each part.

Q: If we have a red-blue complete graph on $n-1+m$ vertices and the blue graph has no copy of $K_{m, m}$, what can we say about the red graph?

Proof Ideas

For simplicity lets consider $H=K_{m, m}$ the complete bipartite graph with m vertices in each part.

Q: If we have a red-blue complete graph on $n-1+m$ vertices and the blue graph has no copy of $K_{m, m}$, what can we say about the red graph?
A: The red graph is an expander! (almost)

Proof Ideas

For simplicity lets consider $H=K_{m, m}$ the complete bipartite graph with m vertices in each part.

Q: If we have a red-blue complete graph on $n-1+m$ vertices and the blue graph has no copy of $K_{m, m}$, what can we say about the red graph?
A: The red graph is an expander! (almost) For any set S of m vertices, $|N(S)| \geq n-m$.

Proof Ideas

For simplicity lets consider $H=K_{m, m}$ the complete bipartite graph with m vertices in each part.

Q: If we have a red-blue complete graph on $n-1+m$ vertices and the blue graph has no copy of $K_{m, m}$, what can we say about the red graph?
A: The red graph is an expander! (almost) For any set S of m vertices, $|N(S)| \geq n-m$.

Theorem (Haxell 2001): In an expander on n vertices, we can find any bounded degree tree on $.99 n$ vertices.

Proof Ideas

For simplicity lets consider $H=K_{m, m}$ the complete bipartite graph with m vertices in each part.

Q: If we have a red-blue complete graph on $n-1+m$ vertices and the blue graph has no copy of $K_{m, m}$, what can we say about the red graph?
A: The red graph is an expander! (almost) For any set S of m vertices, $|N(S)| \geq n-m$.

Theorem (Haxell 2001): In an expander on n vertices, we can find any bounded degree tree on $.99 n$ vertices.

Theorem (Montgomery 2014): For any tree T on n vertices with max degree Δ, the random graph $G\left(n, \Delta \log ^{5} n / n\right)$ almost surely contains a copy of T.

Conjecture: For any tree T on n vertices with max degree Δ, and any graph H with $n \geq O(\Delta|H|)$,

$$
R(T, H)=(n-1)(\chi(H)-1)+\sigma(H) .
$$

Conjecture: For any tree T on n vertices with max degree Δ, and any graph H with $n \geq O(\Delta|H|)$,

$$
R(T, H)=(n-1)(\chi(H)-1)+\sigma(H)
$$

- We can prove it for trees with linearly many leaves.

Conjecture: For any tree T on n vertices with max degree Δ, and any graph H with $n \geq O(\Delta|H|)$,

$$
R(T, H)=(n-1)(\chi(H)-1)+\sigma(H)
$$

- We can prove it for trees with linearly many leaves.

Thank you.

