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Ramsey Goodness

e v(H) = smallest number of colors in a proper coloring of H
e o(H) = minimum size of a color class in a x(H )-coloring of H

Theorem (Burr 1981): For any connected GG with |G| > o(H )
G H) = (G @ o)

xH) =1
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Gl—-1 |G]—1 G|—1 o(H)-1

Definition: A graph G is called H-good if equality holds
above.
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Theorem (Erdés, Faudree, Rousseau, Schelp 1985): For any graph H
and A, there exists ng such that for all n > ng, any tree T'onn
vertices with max degree A satisfies

RITH)=n—1)(x(H)—1)+0o(H).

Thinking of A, x(H ) as constants, their methods can at best
give ng = Q(|H[*).

Theorem (B., Pokrovskiy, Sudakov 2016): The above theorem holds
for ng = Q(|H|log* |H|).
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Then x(H) =2 and 6(H) = m so
m—D(x(H)—1)+0c=n—1+m.

Q: If we have a red-blue complete graphon n — 1 +m
vertices and the blue graph has no copy of K, ,,,, what can
we say about the red graph GG ?

For any set S with at least m vertices,

Na(S)| > n—|S].

A: (G is an expander!
(Well... almost because only large sets expand)
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where d = 27::’1 1.

Why?
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Actually, this theorem is mostly about showing that an
expander graph with expansion d = (A log4 n) on n

vertices contains any tree on n vertices with max degree Al

(this is where the pesky log4 comes from)
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Theorem (Haxell 2001): In an expander on 1 vertices, we can
find a given bounded degree tree on .99n vertices.

Fact: A tree either has many leaves or many long disjoint
induced paths.

Case 2: 1" has many long disjoint
induced paths

1. Remove paths to obtain T".
2. Partition G’ into G, G}, and

find absorbers in G5 .
3. Apply Haxell to find a copy

of 1T In G-

4. Use absorbers to connect the
paths and obtain 1.
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A: Yes but it is quite technical, and requires more ideas... look
at the paper if you are curious!

Conjecture: For any tree 7' on n vertices with max degree A,
and any graph H, there exists a constant Ca ,(g) such that

R(ITTH = (n= L(x(H)= 1)+ o(H)

whenever n > Ca )| H]|.

e Known for paths with CA,X(H) — 4 (Pokrovskiy and Sudakov 2016).

e Our method proves it for trees with at least Q2(A|H|) leaves.




