RAMSEY GOODNESS OF BOUNDED DEGREE TREES

Igor Balla

Department of Mathematics, ETH Zürich

Joint work with: Alexey Pokrovskiy, Benny Sudakov

Complete graph on N vertices

Complete graph on N vertices

 $R(K_3, K_3) = 6$

Complete graph on N vertices

Theorem (Ramsey 1930): $R(K_n, K_n)$ is well defined.

Complete graph on N vertices

Theorem (Ramsey 1930): $R(K_n, K_n)$ is well defined.

Theorem (Erdős 1947; Erdős and Szekeres 1935):

 $\left(\sqrt{2}\right)^n \le R(K_n, K_n) \le 4^n$

Theorem (Erdős 1947): $R(P_n, K_m) = (n-1)(m-1) + 1$ Path with n vertices

Theorem (Erdős 1947): $R(P_n, K_m) = (n-1)(m-1) + 1$

Path with n vertices

Theorem (Chvatal 1977): $R(T_n, K_m) = (n-1)(m-1) + 1$

Tree with n vertices

Theorem (Erdős 1947): $R(P_n, K_m) = (n-1)(m-1) + 1$

Path with n vertices

Theorem (Chvatal 1977): $R(T_n, K_m) = (n-1)(m-1) + 1$

Tree with n vertices

Lower bound construction:

m - 1

Ramsey Goodness				

Ramsey Goodness

• $\chi(H) =$ smallest number of colors in a proper coloring of H• $\sigma(H) =$ minimum size of a color class in a $\chi(H)$ -coloring of H

Ramsey Goodness

- $\chi(H) = \text{smallest number of colors in a proper coloring of } H$
- $\sigma(H) =$ minimum size of a color class in a $\chi(H)$ -coloring of H
- **Theorem** (Burr 1981): For any connected G with $|G| \ge \sigma(H)$

 $R(G, H) \ge (|G| - 1)(\chi(H) - 1) + \sigma(H)$

Ramsey Goodness

• $\chi(H) =$ smallest number of colors in a proper coloring of H • $\sigma(H) =$ minimum size of a color class in a $\chi(H)$ -coloring of H**Theorem** (Burr 1981): For any connected G with $|G| \ge \sigma(H)$ $R(G, H) \ge (|G| - 1)(\chi(H) - 1) + \sigma(H)$ $\chi(H)-1$ **Proof:** |G| - 1 |G| - 1 $|G| - 1 \quad \sigma(H) - 1$

Ramsey Goodness • $\chi(H) =$ smallest number of colors in a proper coloring of H • $\sigma(H) =$ minimum size of a color class in a $\chi(H)$ -coloring of H**Theorem** (Burr 1981): For any connected G with $|G| \ge \sigma(H)$ $R(G, H) \ge (|G| - 1)(\chi(H) - 1) + \sigma(H)$ $\chi(H)-1$ **Proof:** $|G| - 1 \quad \sigma(H) - 1$ |G| - 1 |G| - 1**Definition:** A graph G is called H-good if equality holds

above.

Conjecture (Allen, Brightwell, and Skokan 2013): For $n \geq \chi(H)|H|$ $R(P_n, H) = (n - 1)(\chi(H) - 1) + \sigma(H)$

$R(P_n, H) = (n - 1)(\chi(H) - 1) + \sigma(H)$

• Proven when $n \ge 4|H|$ (Pokrovskiy and Sudakov 2016).

$$R(P_n, H) = (n - 1)(\chi(H) - 1) + \sigma(H)$$

• Proven when $n \ge 4|H|$ (Pokrovskiy and Sudakov 2016).

Theorem (Erdős, Faudree, Rousseau, Schelp 1985): For any graph Hand Δ , there exists n_0 such that for all $n \ge n_0$, any tree T on nvertices with max degree Δ satisfies $R(T, H) = (n - 1)(\chi(H) - 1) + \sigma(H).$

$$R(P_n, H) = (n - 1)(\chi(H) - 1) + \sigma(H)$$

• Proven when $n \ge 4|H|$ (Pokrovskiy and Sudakov 2016).

Theorem (Erdős, Faudree, Rousseau, Schelp 1985): For any graph Hand Δ , there exists n_0 such that for all $n \ge n_0$, any tree T on nvertices with max degree Δ satisfies $R(T, H) = (n - 1)(\chi(H) - 1) + \sigma(H).$

Thinking of Δ , $\chi(H)$ as constants, their methods can at best give $n_0 = \Omega(|H|^4)$.

$$R(P_n, H) = (n - 1)(\chi(H) - 1) + \sigma(H)$$

• Proven when $n \ge 4|H|$ (Pokrovskiy and Sudakov 2016).

Theorem (Erdős, Faudree, Rousseau, Schelp 1985): For any graph Hand Δ , there exists n_0 such that for all $n \ge n_0$, any tree T on nvertices with max degree Δ satisfies $R(T, H) = (n - 1)(\chi(H) - 1) + \sigma(H).$

Thinking of Δ , $\chi(H)$ as constants, their methods can at best give $n_0 = \Omega(|H|^4)$.

Theorem (B., Pokrovskiy, Sudakov 2016): The above theorem holds for $n_0 = \Omega(|H| \log^4 |H|)$.

Proof Ideas				

For simplicity lets consider $H = K_{m,m}$ the complete bipartite

graph with m vertices in each part.

For simplicity lets consider $H = K_{m,m}$ the complete bipartite graph with m vertices in each part.

Then
$$\chi(H) = 2$$
 and $\sigma(H) = m$ so
$$(n-1)(\chi(H)-1) + \sigma = n-1+m.$$

For simplicity lets consider $H = K_{m,m}$ the complete bipartite graph with m vertices in each part.

Then $\chi(H) = 2$ and $\sigma(H) = m$ so

 $(n-1)(\chi(H)-1) + \sigma = n - 1 + m.$

Q: If we have a red-blue complete graph on n - 1 + m vertices and the blue graph has no copy of $K_{m,m}$, what can we say about the red graph G?

For simplicity lets consider $H = K_{m,m}$ the complete bipartite graph with m vertices in each part.

Then $\chi(H) = 2$ and $\sigma(H) = m$ so

$$(n-1)(\chi(H) - 1) + \sigma = n - 1 + m.$$

Q: If we have a red-blue complete graph on n - 1 + m vertices and the blue graph has no copy of $K_{m,m}$, what can we say about the red graph G?

For any set S with at least m vertices,

For simplicity lets consider $H = K_{m,m}$ the complete bipartite graph with m vertices in each part.

Then
$$\chi(H) = 2$$
 and $\sigma(H) = m$ so $(n-1)(\chi(H)-1) + \sigma = n-1 + \sigma$

Q: If we have a red-blue complete graph on n - 1 + m vertices and the blue graph has no copy of $K_{m,m}$, what can we say about the red graph G?

For any set S with at least m vertices,

$$N_{\mathbf{G}}(S)| \ge n - |S|.$$

m.

For simplicity lets consider $H = K_{m,m}$ the complete bipartite graph with m vertices in each part.

Then
$$\chi(H)=2$$
 and $\sigma(H)=m$ so $(n-1)(\chi(H)-1)+\sigma=n-1+m.$

Q: If we have a red-blue complete graph on n - 1 + m vertices and the blue graph has no copy of $K_{m,m}$, what can we say about the red graph G?

For any set S with at least m vertices,

$$N_{\mathbf{G}}(S)| \ge n - |S|.$$

A: G is an expander!

For simplicity lets consider $H = K_{m,m}$ the complete bipartite graph with m vertices in each part.

Then
$$\chi(H) = 2$$
 and $\sigma(H) = m$ so
$$(n-1)(\chi(H)-1) + \sigma = n-1+m.$$

Q: If we have a red-blue complete graph on n - 1 + m vertices and the blue graph has no copy of $K_{m,m}$, what can we say about the red graph G?

For any set S with at least m vertices,

$$N_{\mathbf{G}}(S)| \ge n - |S|.$$

A: G is an expander!

(Well... almost because only large sets expand)

Idea: Remove a maximal subset X such that $|X| \le m - 1$ and $|N_G(X)| < d|X|$.

X

Idea: Remove a maximal subset X such that $|X| \le m - 1$ and $|N_G(X)| < d|X|$.

X

G'

Let $G' = G \setminus X$

and note that

Idea: Remove a maximal subset X such that $|X| \le m - 1$ and $|N_G(X)| < d|X|$.

Let $G' = G \setminus X$ and note that $|G'| \ge n$.

Claim: For all $S \subseteq G'$ with $|S| \leq m - 1$, $|N_{G'}(S)| \geq d|S|$ where $d = \frac{n}{2m} - 1$.

Idea: Remove a maximal subset X such that $|X| \le m - 1$ and $|N_G(X)| < d|X|$.

Let $G' = G \setminus X$ and note that $G' \mid X$ $|G'| \ge n$.

Claim: For all $S \subseteq G'$ with $|S| \leq m - 1$, $|N_{G'}(S)| \geq d|S|$ where $d = \frac{n}{2m} - 1$. Why?

Theorem (Montgomery 2014): For any tree T on n vertices with max degree Δ , the random graph $G(n, \Delta \log^5 n/n)$ almost surely contains a copy of T.

Theorem (Montgomery 2014): For any tree T on n vertices with max degree Δ , the random graph $G(n, \Delta \log^5 n/n)$ almost surely contains a copy of T.

Actually, this theorem is mostly about showing that an expander graph with expansion $d = \Omega(\Delta \log^4 n)$ on n

vertices contains any tree on n vertices with max degree $\Delta!$

Theorem (Montgomery 2014): For any tree T on n vertices with max degree Δ , the random graph $G(n, \Delta \log^5 n/n)$ almost surely contains a copy of T.

Actually, this theorem is mostly about showing that an expander graph with expansion $d = \Omega(\Delta \log^4 n)$ on n vertices contains any tree on n vertices with max degree Δ !

(this is where the pesky \log^4 comes from)

Theorem (Haxell 2001): In an expander on n vertices, we can

find a given bounded degree tree on .99n vertices.

Theorem (Haxell 2001): In an expander on n vertices, we can

find a given bounded degree tree on .99n vertices.

Fact: A tree either has many leaves or many long disjoint

induced paths.

Theorem (Haxell 2001): In an expander on n vertices, we can

find a given bounded degree tree on .99n vertices.

Fact: A tree either has many leaves or many long disjoint

induced paths.

Case 1: T has many leaves

TI

Theorem (Haxell 2001): In an expander on n vertices, we can

find a given bounded degree tree on .99n vertices.

Fact: A tree either has many leaves or many long disjoint

induced paths.

Case 1: T has many leaves

1. Remove leaves to obtain T'.

G'

T'

Theorem (Haxell 2001): In an expander on n vertices, we can

find a given bounded degree tree on .99n vertices.

Fact: A tree either has many leaves or many long disjoint

induced paths.

Case 1: T has many leaves

1. Remove leaves to obtain T'.

2. Apply Haxell to find a copy of T' in G'.

G

Theorem (Haxell 2001): In an expander on n vertices, we can

find a given bounded degree tree on .99n vertices.

Fact: A tree either has many leaves or many long disjoint

induced paths.

Case 1: T has many leaves

1. Remove leaves to obtain T'.

2. Apply Haxell to find a copy of T' in G'.

3. Remember that G' is

contained in G.

(-

Theorem (Haxell 2001): In an expander on n vertices, we can

find a given bounded degree tree on .99n vertices.

Fact: A tree either has many leaves or many long disjoint

induced paths.

Case 1: T has many leaves

1. Remove leaves to obtain T'.

2. Apply Haxell to find a copy of T' in G'.

3. Remember that G' is

contained in G.

4. Apply Hall's theorem to

connect the leaves and obtain T.

Theorem (Haxell 2001): In an expander on n vertices, we can

find a given bounded degree tree on .99n vertices.

Fact: A tree either has many leaves or many long disjoint induced paths.

Case 2: T has many long disjoint

induced paths

Theorem (Haxell 2001): In an expander on n vertices, we can

find a given bounded degree tree on .99n vertices.

Fact: A tree either has many leaves or many long disjoint induced paths.

Case 2: T has many long disjoint induced paths

Theorem (Haxell 2001): In an expander on n vertices, we can

find a given bounded degree tree on .99n vertices.

Fact: A tree either has many leaves or many long disjoint induced paths.

Case 2: T has many long disjoint

induced paths

1. Remove paths to obtain T'.

Theorem (Haxell 2001): In an expander on n vertices, we can

find a given bounded degree tree on .99n vertices.

Fact: A tree either has many leaves or many long disjoint

induced paths.

Case 2: T has many long disjoint

induced paths

1. Remove paths to obtain T'. 2. Partition G' into G'_1, G'_2 and find absorbers in G'_2 .

Theorem (Haxell 2001): In an expander on n vertices, we can

find a given bounded degree tree on .99n vertices.

Fact: A tree either has many leaves or many long disjoint

induced paths.

Case 2: T has many long disjoint induced paths

1. Remove paths to obtain T'. 2. Partition G' into G'_1, G'_2 and find absorbers in G'_2 . 3. Apply Haxell to find a copy

of T' in G'_1 .

Theorem (Haxell 2001): In an expander on n vertices, we can

find a given bounded degree tree on .99n vertices.

Fact: A tree either has many leaves or many long disjoint

induced paths.

Case 2: T has many long disjoint

induced paths

1. Remove paths to obtain T'. 2. Partition G' into G'_1, G'_2 and find absorbers in G'_2 . 3. Apply Haxell to find a copy of T' in G'_1 . 4. Use absorbers to connect the paths and obtain T.

What Else?				

Q: We figured out what to do when $H = K_{m,m}$. What about when $H = K_{m,m,...,m}$? Can we do it by induction?

Q: We figured out what to do when $H = K_{m,m}$. What about when $H = K_{m,m,\dots,m}$? Can we do it by induction?

A: Yes but it is quite technical, and requires more ideas... look at the paper if you are curious!

Q: We figured out what to do when $H = K_{m,m}$. What about when $H = K_{m,m,\dots,m}$? Can we do it by induction?

A: Yes but it is quite technical, and requires more ideas... look at the paper if you are curious!

Conjecture: For any tree T on n vertices with max degree Δ , and any graph H, there exists a constant $C_{\Delta,\chi(H)}$ such that $R(T,H) = (n-1)(\chi(H)-1) + \sigma(H)$ whenever $n \ge C_{\Delta,\chi(H)}|H|$.

Q: We figured out what to do when $H = K_{m,m}$. What about when $H = K_{m,m,\dots,m}$? Can we do it by induction?

A: Yes but it is quite technical, and requires more ideas... look at the paper if you are curious!

Conjecture: For any tree T on n vertices with max degree Δ , and any graph H, there exists a constant $C_{\Delta,\chi(H)}$ such that $R(T,H) = (n-1)(\chi(H)-1) + \sigma(H)$ whenever $n \ge C_{\Delta,\chi(H)}|H|$.

• Known for paths with $C_{\Delta,\chi(H)}=4$ (Pokrovskiy and Sudakov 2016).

Q: We figured out what to do when $H = K_{m,m}$. What about when $H = K_{m,m,\dots,m}$? Can we do it by induction?

A: Yes but it is quite technical, and requires more ideas... look at the paper if you are curious!

Conjecture: For any tree T on n vertices with max degree Δ , and any graph H, there exists a constant $C_{\Delta,\chi(H)}$ such that $R(T,H) = (n-1)(\chi(H)-1) + \sigma(H)$ whenever $n \ge C_{\Delta,\chi(H)}|H|$.

• Known for paths with $C_{\Delta,\chi(H)} = 4$ (Pokrovskiy and Sudakov 2016). • Our method proves it for trees with at least $\Omega(\Delta|H|)$ leaves.