RAMSEY GOODNESS OF BOUNDED DEGREE TREES

Igor Balla

Department of Mathematics, ETH Zürich

Joint work with: Alexey Pokrovskiy, Benny Sudakov

Ramsey number: $R(G, H)$ is the minimum N such that any red-blue coloring of K_{N} contains either a red copy of G or a blue copy of H.

Complete graph on N vertices

Ramsey number: $R(G, H)$ is the minimum N such that any red-blue coloring of K_{N} contains either a red copy of G or a blue copy of H.

Complete graph on N vertices

$$
R\left(K_{3}, K_{3}\right)=6
$$

Ramsey number: $R(G, H)$ is the minimum N such that any red-blue coloring of K_{N} contains either a red copy of G or a blue copy of H.

Complete graph on N vertices

$$
R\left(K_{3}, K_{3}\right)=6
$$

Theorem (Ramsey 1930): $R\left(K_{n}, K_{n}\right)$ is well defined.

Ramsey number: $R(G, H)$ is the minimum N such that any red-blue coloring of K_{N} contains either a red copy of G or a blue copy of H.

Complete graph on N vertices

$$
R\left(K_{3}, K_{3}\right)=6
$$

Theorem (Ramsey 1930): $R\left(K_{n}, K_{n}\right)$ is well defined.

Theorem (Erdős 1947; Erdős and Szekeres 1935):

$$
(\sqrt{2})^{n} \leq R\left(K_{n}, K_{n}\right) \leq 4^{n}
$$

Theorem (Erdős 1947): $R\left(P_{n}, K_{m}\right)=(n-1)(m-1)+1$

Path with n vertices

Theorem (Erdős 1947): $R\left(\underset{\sim}{P_{n}}, K_{m}\right)=(n-1)(m-1)+1$ Path with n vertices

Theorem (Chvatal 1977): $R\left(T_{n}, K_{m}\right)=(n-1)(m-1)+1$
Tree with n vertices

Theorem (Erdős 1947): $R\left(P_{n}, K_{m}\right)=(n-1)(m-1)+1$ Path with n vertices

Theorem (Chvatal 1977): $R\left(T_{n}, K_{m}\right)=(n-1)(m-1)+1$ Tree with n vertices

Lower bound construction:

Ramsey Goodness

Ramsey Goodness

- $\chi(H)=$ smallest number of colors in a proper coloring of H
- $\sigma(H)=$ minimum size of a color class in a $\chi(H)$-coloring of H

Ramsey Goodness

- $\chi(H)=$ smallest number of colors in a proper coloring of H
- $\sigma(H)=$ minimum size of a color class in a $\chi(H)$-coloring of H

Theorem (Burr 1981): For any connected G with $|G| \geq \sigma(H)$

$$
R(G, H) \geq(|G|-1)(\chi(H)-1)+\sigma(H)
$$

Ramsey Goodness

- $\chi(H)=$ smallest number of colors in a proper coloring of H
- $\sigma(H)=$ minimum size of a color class in a $\chi(H)$-coloring of H

Theorem (Burr 1981): For any connected G with $|G| \geq \sigma(H)$

$$
R(G, H) \geq(|G|-1)(\chi(H)-1)+\sigma(H)
$$

Proof:

Ramsey Goodness

- $\chi(H)=$ smallest number of colors in a proper coloring of H
- $\sigma(H)=$ minimum size of a color class in a $\chi(H)$-coloring of H

Theorem (Burr 1981): For any connected G with $|G| \geq \sigma(H)$

$$
R(G, H) \geq(|G|-1)(\chi(H)-1)+\sigma(H)
$$

Proof:

Definition: A graph G is called H-good if equality holds above.

Conjecture (Allen, Brightwell, and Skokan 2013): For $n \geq \chi(H)|H|$

$$
R\left(P_{n}, H\right)=(n-1)(\chi(H)-1)+\sigma(H)
$$

Conjecture (Allen, Brightwell, and Skokan 2013): For $n \geq \chi(H)|H|$

$$
R\left(P_{n}, H\right)=(n-1)(\chi(H)-1)+\sigma(H)
$$

-Proven when $n \geq 4|H|$ (Pokrovskiy and Sudakov 2016).

Conjecture (Allen, Brightwell, and Skokan 2013): For $n \geq \chi(H)|H|$

$$
R\left(P_{n}, H\right)=(n-1)(\chi(H)-1)+\sigma(H)
$$

-Proven when $n \geq 4|H|$ (Pokrovskiy and Sudakov 2016).

Theorem (Erdős, Faudree, Rousseau, Schelp 1985): For any graph H and Δ, there exists n_{0} such that for all $n \geq n_{0}$, any tree T on n vertices with max degree Δ satisfies

$$
R(T, H)=(n-1)(\chi(H)-1)+\sigma(H)
$$

Conjecture (Allen, Brightwell, and Skokan 2013): For $n \geq \chi(H)|H|$

$$
R\left(P_{n}, H\right)=(n-1)(\chi(H)-1)+\sigma(H)
$$

-Proven when $n \geq 4|H|$ (Pokrovskiy and Sudakov 2016).

Theorem (Erdős, Faudree, Rousseau, Schelp 1985): For any graph H and Δ, there exists n_{0} such that for all $n \geq n_{0}$, any tree T on n vertices with max degree Δ satisfies

$$
R(T, H)=(n-1)(\chi(H)-1)+\sigma(H)
$$

Thinking of $\Delta, \chi(H)$ as constants, their methods can at best give $n_{0}=\Omega\left(|H|^{4}\right)$.

Conjecture (Allen, Brightwell, and Skokan 2013): For $n \geq \chi(H)|H|$

$$
R\left(P_{n}, H\right)=(n-1)(\chi(H)-1)+\sigma(H)
$$

-Proven when $n \geq 4|H|$ (Pokrovskiy and Sudakov 2016).

Theorem (Erdős, Faudree, Rousseau, Schelp 1985): For any graph H and Δ, there exists n_{0} such that for all $n \geq n_{0}$, any tree T on n vertices with max degree Δ satisfies

$$
R(T, H)=(n-1)(\chi(H)-1)+\sigma(H)
$$

Thinking of $\Delta, \chi(H)$ as constants, their methods can at best give $n_{0}=\Omega\left(|H|^{4}\right)$.

Theorem (B., Pokrovskiy, Sudakov 2016): The above theorem holds for $n_{0}=\Omega\left(|H| \log ^{4}|H|\right)$.

Proof Ideas

Proof Ideas

For simplicity lets consider $H=K_{m, m}$ the complete bipartite graph with m vertices in each part.

Proof Ideas

For simplicity lets consider $H=K_{m, m}$ the complete bipartite graph with m vertices in each part.

Then $\chi(H)=2$ and $\sigma(H)=m$ so

$$
(n-1)(\chi(H)-1)+\sigma=n-1+m
$$

Proof Ideas

For simplicity lets consider $H=K_{m, m}$ the complete bipartite graph with m vertices in each part.

Then $\chi(H)=2$ and $\sigma(H)=m$ so

$$
(n-1)(\chi(H)-1)+\sigma=n-1+m
$$

Q: If we have a red-blue complete graph on $n-1+m$ vertices and the blue graph has no copy of $K_{m, m}$, what can we say about the red graph G ?

Proof Ideas

For simplicity lets consider $H=K_{m, m}$ the complete bipartite graph with m vertices in each part.

Then $\chi(H)=2$ and $\sigma(H)=m$ so

$$
(n-1)(\chi(H)-1)+\sigma=n-1+m
$$

Q: If we have a red-blue complete graph on $n-1+m$ vertices and the blue graph has no copy of $K_{m, m}$, what can we say about the red graph G ?

For any set S with at least m vertices,

Proof Ideas

For simplicity lets consider $H=K_{m, m}$ the complete bipartite graph with m vertices in each part.

Then $\chi(H)=2$ and $\sigma(H)=m$ so

$$
(n-1)(\chi(H)-1)+\sigma=n-1+m .
$$

Q: If we have a red-blue complete graph on $n-1+m$ vertices and the blue graph has no copy of $K_{m, m}$, what can we say about the red graph G ?

For any set S with at least m vertices,

$$
\left|N_{G}(S)\right| \geq n-|S| .
$$

Proof Ideas

For simplicity lets consider $H=K_{m, m}$ the complete bipartite graph with m vertices in each part.
Then $\chi(H)=2$ and $\sigma(H)=m$ so

$$
(n-1)(\chi(H)-1)+\sigma=n-1+m .
$$

Q: If we have a red-blue complete graph on $n-1+m$ vertices and the blue graph has no copy of $K_{m, m}$, what can we say about the red graph G ?

For any set S with at least m vertices,

$$
\left|N_{G}(S)\right| \geq n-|S| .
$$

A: G is an expander!

Proof Ideas

For simplicity lets consider $H=K_{m, m}$ the complete bipartite graph with m vertices in each part.
Then $\chi(H)=2$ and $\sigma(H)=m$ so

$$
(n-1)(\chi(H)-1)+\sigma=n-1+m .
$$

Q: If we have a red-blue complete graph on $n-1+m$ vertices and the blue graph has no copy of $K_{m, m}$, what can we say about the red graph G ?

For any set S with at least m vertices,

$$
\left|N_{G}(S)\right| \geq n-|S| .
$$

A: G is an expander!
(Well... almost because only large sets expand)

For G to be an expander, we need to find a d such that for all sets S of size at most $m-1,\left|N_{G}(S)\right| \geq d|S|$.

For G to be an expander, we need to find a d such that for all sets S of size at most $m-1,\left|N_{G}(S)\right| \geq d|S|$.

Idea: Remove a maximal subset X such that $|X| \leq m-1$ and $\left|N_{G}(X)\right|<d|X|$.

For G to be an expander, we need to find a d such that for all sets S of size at most $m-1,\left|N_{G}(S)\right| \geq d|S|$.

Idea: Remove a maximal subset X such that $|X| \leq m-1$ and $\left|N_{G}(X)\right|<d|X|$.

Let $G^{\prime}=G \backslash X$ and note that $\left|G^{\prime}\right| \geq n$.

For G to be an expander, we need to find a d such that for all sets S of size at most $m-1,\left|N_{G}(S)\right| \geq d|S|$.

Idea: Remove a maximal subset X such that $|X| \leq m-1$ and $\left|N_{G}(X)\right|<d|X|$.

Let $G^{\prime}=G \backslash X$ and note that $\left|G^{\prime}\right| \geq n$.

Claim: For all $S \subseteq G^{\prime}$ with $|S| \leq m-1,\left|N_{G^{\prime}}(S)\right| \geq d|S|$ where $d=\frac{n}{2 m}-1$.

For G to be an expander, we need to find a d such that for all sets S of size at most $m-1,\left|N_{G}(S)\right| \geq d|S|$.

Idea: Remove a maximal subset X such that $|X| \leq m-1$ and $\left|N_{G}(X)\right|<d|X|$.

Let $G^{\prime}=G \backslash X$ and note that $\left|G^{\prime}\right| \geq n$.

Claim: For all $S \subseteq G^{\prime}$ with $|S| \leq m-1,\left|N_{G^{\prime}}(S)\right| \geq d|S|$ where $d=\frac{n}{2 m}-1$.

Why?

Q: Now that we know G^{\prime} is an expander with expansion $d \approx n / m$ and having at least n vertices, can we find in it, a copy of a given tree T with n vertices and max degree Δ ?

Q: Now that we know G^{\prime} is an expander with expansion $d \approx n / m$ and having at least n vertices, can we find in it, a copy of a given tree T with n vertices and max degree Δ ?

Theorem (Montgomery 2014): For any tree T on n vertices with max degree Δ, the random graph $G\left(n, \Delta \log ^{5} n / n\right)$ almost surely contains a copy of T.

Q: Now that we know G^{\prime} is an expander with expansion $d \approx n / m$ and having at least n vertices, can we find in it, a copy of a given tree T with n vertices and max degree Δ ?

Theorem (Montgomery 2014): For any tree T on n vertices with max degree Δ, the random graph $G\left(n, \Delta \log ^{5} n / n\right)$ almost surely contains a copy of T.

Actually, this theorem is mostly about showing that an expander graph with expansion $d=\Omega\left(\Delta \log ^{4} n\right)$ on n vertices contains any tree on n vertices with max degree Δ !

Q: Now that we know G^{\prime} is an expander with expansion $d \approx n / m$ and having at least n vertices, can we find in it, a copy of a given tree T with n vertices and max degree Δ ?

Theorem (Montgomery 2014): For any tree T on n vertices with max dégree Δ, the random graph $G\left(n, \Delta \log ^{5} n / n\right)$ almost surely contains a copy of T.

Actually, this theorem is mostly about showing that an expander graph with expansion $d=\Omega\left(\Delta \log ^{4} n\right)$ on n vertices contains any tree on n vertices with max degree Δ !
(this is where the pesky $\log ^{4}$ comes from)

Proof Sketch (Very Rough)

Proof Sketch (Very Rough)

Theorem (Haxell 2001): In an expander on n vertices, we can find a given bounded degree tree on $.99 n$ vertices.

Proof Sketch (Very Rough)

Theorem (Haxell 2001): In an expander on n vertices, we can find a given bounded degree tree on $.99 n$ vertices.

Fact: A tree either has many leaves or many long disjoint induced paths.

Proof Sketch (Very Rough)

Theorem (Haxell 2001): In an expander on n vertices, we can find a given bounded degree tree on $.99 n$ vertices.

Fact: A tree either has many leaves or many long disjoint induced paths.

Case 1: T has many leaves

Proof Sketch (Very Rough)

Theorem (Haxell 2001): In an expander on n vertices, we can find a given bounded degree tree on $.99 n$ vertices.

Fact: A tree either has many leaves or many long disjoint induced paths.

Case 1: T has many leaves

1. Remove leaves to obtain T^{\prime}.

Proof Sketch (Very Rough)

Theorem (Haxell 2001): In an expander on n vertices, we can find a given bounded degree tree on $.99 n$ vertices.

Fact: A tree either has many leaves or many long disjoint induced paths.

Case 1: T has many leaves

1. Remove leaves to obtain T^{\prime}.
2. Apply Haxell to find a copy of T^{\prime} in G^{\prime}.

\vdots
\vdots
\vdots

Proof Sketch (Very Rough)

Theorem (Haxell 2001): In an expander on n vertices, we can find a given bounded degree tree on $.99 n$ vertices.

Fact: A tree either has many leaves or many long disjoint induced paths.

Case 1: T has many leaves

1. Remove leaves to obtain T^{\prime}.
2. Apply Haxell to find a copy of T^{\prime} in G^{\prime}.
3. Remember that G^{\prime} is contained in G.

Proof Sketch (Very Rough)

Theorem (Haxell 2001): In an expander on n vertices, we can find a given bounded degree tree on $.99 n$ vertices.

Fact: A tree either has many leaves or many long disjoint induced paths.

Case 1: T has many leaves

1. Remove leaves to obtain T^{\prime}.
2. Apply Haxell to find a copy of T^{\prime} in G^{\prime}.
3. Remember that G^{\prime} is
contained in G.
4. Apply Hall's theorem to connect the leaves and obtain T.

Proof Sketch (Very Rough)

Theorem (Haxell 2001): In an expander on n vertices, we can find a given bounded degree tree on $.99 n$ vertices.

Fact: A tree either has many leaves or many long disjoint induced paths.

Case 2: T has many long disjoint induced paths

Proof Sketch (Very Rough)

Theorem (Haxell 2001): In an expander on n vertices, we can find a given bounded degree tree on $.99 n$ vertices.

Fact: A tree either has many leaves or many long disjoint induced paths.

Case 2: T has many long disjoint induced paths

Proof Sketch (Very Rough)

Theorem (Haxell 2001): In an expander on n vertices, we can find a given bounded degree tree on $.99 n$ vertices.

Fact: A tree either has many leaves or many long disjoint induced paths.
Case 2: T has many long disjoint induced paths

1. Remove paths to obtain T^{\prime}.

Proof Sketch (Very Rough)

Theorem (Haxell 2001): In an expander on n vertices, we can find a given bounded degree tree on $.99 n$ vertices.

Fact: A tree either has many leaves or many long disjoint induced paths.
Case 2: T has many long disjoint induced paths

1. Remove paths to obtain T^{\prime}. 2. Partition G^{\prime} into $G_{1}^{\prime}, G_{2}^{\prime}$ and find absorbers in G_{2}^{\prime}.

Proof Sketch (Very Rough)

Theorem (Haxell 2001): In an expander on n vertices, we can find a given bounded degree tree on $.99 n$ vertices.

Fact: A tree either has many leaves or many long disjoint induced paths.
Case 2: T has many long disjoint induced paths

1. Remove paths to obtain T^{\prime}. 2. Partition G^{\prime} into $G_{1}^{\prime}, G_{2}^{\prime}$ and find absorbers in G_{2}^{\prime}.
2. Apply Haxell to find a copy of T^{\prime} in G_{1}^{\prime}.

Proof Sketch (Very Rough)

Theorem (Haxell 2001): In an expander on n vertices, we can find a given bounded degree tree on $.99 n$ vertices.

Fact: A tree either has many leaves or many long disjoint induced paths.
Case 2: T has many long disjoint induced paths

1. Remove paths to obtain T^{\prime}. 2. Partition G^{\prime} into $G_{1}^{\prime}, G_{2}^{\prime}$ and find absorbers in G_{2}^{\prime}.
2. Apply Haxell to find a copy of T^{\prime} in G_{1}^{\prime}.
3. Use absorbers to connect the paths and obtain T.

What Else?

What Else?

Q: We figured out what to do when $H=K_{m, m}$. What about when $H=K_{m, m, \ldots, m}$? Can we do it by induction?

What Else?

Q: We figured out what to do when $H=K_{m, m}$. What about when $H=K_{m, m, \ldots, m}$? Can we do it by induction?

A: Yes but it is quite technical, and requires more ideas... look at the paper if you are curious!

What Else?

Q: We figured out what to do when $H=K_{m, m}$. What about when $H=K_{m, m, \ldots, m}$? Can we do it by induction?

A: Yes but it is quite technical, and requires more ideas... look at the paper if you are curious!

Conjecture: For any tree T on n vertices with max degree Δ, and any graph H, there exists a constant $C_{\Delta, \chi(H)}$ such that

$$
R(T, H)=(n-1)(\chi(H)-1)+\sigma(H)
$$

whenever $n \geq C_{\Delta, \chi(H)}|H|$.

What Else?

Q: We figured out what to do when $H=K_{m, m}$. What about when $H=K_{m, m, \ldots, m}$? Can we do it by induction?
A: Yes but it is quite technical, and requires more ideas... look at the paper if you are curious!

Conjecture: For any tree T on n vertices with max degree Δ, and any graph H, there exists a constant $C_{\Delta, \chi(H)}$ such that

$$
R(T, H)=(n-1)(\chi(H)-1)+\sigma(H)
$$

whenever $n \geq C_{\Delta, \chi(H)}|H|$.

- Known for paths with $C_{\Delta, \chi(H)}=4$ (Pokrovskiy and Sudakov 2016).

What Else?

Q: We figured out what to do when $H=K_{m, m}$. What about when $H=K_{m, m, \ldots, m}$? Can we do it by induction?
A: Yes but it is quite technical, and requires more ideas... look at the paper if you are curious!

Conjecture: For any tree T on n vertices with max degree Δ, and any graph H, there exists a constant $C_{\Delta, \chi(H)}$ such that

$$
R(T, H)=(n-1)(\chi(H)-1)+\sigma(H)
$$

whenever $n \geq C_{\Delta, \chi(H)}|H|$.

- Known for paths with $C_{\Delta, \chi(H)}=4$ (Pokrovskiy and Sudakov 2016).
- Our method proves it for trees with at least $\Omega(\Delta|H|)$ leaves.

