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Theorem (Chvatal 1977):
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Lower bound construction: . . .
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Theorem (Burr 1981): For any connected      with     |G| � �(H)G
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Definition: A graph     is called    -good if equality holds 
above.
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Theorem (B., Pokrovskiy, Sudakov 2016): The above theorem holds 
for n0 = ⌦(|H| log4 |H|).
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Case 2:     has many long disjoint 
induced paths
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• Our method proves it for trees with at least                  leaves.
C�,�(H) = 4

⌦(�|H|)


