EQUIANGULAR LINES
AND REGULAR GRAPHS

By: Igor Balla




Definition: A set of lines passing through the origin is called
equiangular, if every pair of lines make the same angle.

Question: What is the maximum number of equiangular lines
in R"?

Considered to be one of the founding problems of algebraic
graph theory.

Connections: Earliest work:

o Elliptic geometry Haantjes, Seidel 47-48
Frame theory Blumenthal 49
Theory of polytopes Van Lint, Seidel 66
Algebraic number theory Lemmens, Seidel 73
Quantum information theory
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Theorem[Absolute bound] (Gerzon 73): The number of
equiangular lines in R"is at most ("3").

Proof: Let v1,...,v, be unit vectors along the given lines.
Then (v, v:)i= +o  forsome 0 < o< 1.

Consider the matrices v1v],...,v,v} . They live in the

("*1)-dimensional space of symmetric matrices .7;.

Recalling the Frobenius inner product of matrices

(A, B), = tr(ATB) ZA,:,B,J

we have (v;v],v; ]> r(vivg vjvg) = (v]v;

Hence they are linearly independent.




Theorem (Gerzon 73): The number of equiangular lines in R" is

at most (T‘QH).

This bound is tight in dimension 2,3, 7 and also 23. No other
cases are known.

Theorem (de Caen '00 / Jedwab, Wiebe ‘15 / Greaves, et al. '15):
There exist Q(r?) equiangular lines in R".

1

These constructions all have a = 06 (7) .

Theorem (Neumann 73): If n > 2r then 1=2 is an integer.

Question (Lemmens, Seidel 73):

Determine N,(r), the maximum number of equiangular lines
in R"” with common angle arccos(a)?




What is known?

11—«
1—ra?

Theorem[Relative Bound] (Lemmens, Seidel 73): Ny () < 7
forall a < %

Theorem (B., Draxler, Keevash, Sudakov 17): N, (r) < 2r — 2 for all

o> \Ai@ with equality if and only if « = 1/3.

o 1
Question: What about for <a<O0 (@)?

r

Theorem (Glazyrin, Yu 18): N, (1) < (325 + 2)r+ 2 forall a <

Theorem (Jiang, Tidor, Yao, Zhang, Zhao 19): Let k£ be the minimum
number of vertices in a graph with spectral radius 1-2. Then

N, (1) = Hg—_f))J for all o > 5%, where C > 0 is a constant.




New results

Theorem(B.): N, (r) < 2‘53 | (1‘52‘)"“.
 Based on bounding eigenvalues of a Gram matrix.
Theorem(B.): N,(r) < max ((35 b (2 | (18_0‘;2) (- 1))

a3(l—a)’

= (1 + o(1)) max (=, 2r).
* Based on bounding degrees of a graph, bootstrapped via
an Alon-Boppana theorem.

GoL!




More new results

k
VTr+2 © (loglogr)

Theorem(B.): Let s > 2 be an integer and suppose that

1
Q> pit/ 2500 L Then NO&(T) < (1 T 0(1)) (1 | 4C0821(

In particular, it s =+ oo then N,(r) < (1 + 0(1))%1“

e Based on improved Alon-Boppana theorem (Jiang-Polyanskii)




New results in the complex setting

Given a pair of complex lines U,V C C’ the quantity | (u,v) | is
the same for all unit vectors u € U,v € V and so arccos | {(u, v) |
is called the Hermitian angle between U and V.

We define NS (r) to be the maximum number of complex
equiangular lines in C” with common Hermitian angle arccos(«).

Theorem[Absolute bound] (Delsarte, Goethals, Seidel 75): Ng (r) =it

Collections of 7% complex equiangular lines in C" are known as
SICs/SIC-POVMs and their existence has great theoretical and
practical importance in quantum theory.




New results in the complex setting

Conjecture (Zauner 99): For each r € N, max, N-(r) = r? and a
construction can be obtained as the orbit of a vector under
the action of a Weyl-Heisenberg group.

Theorem|[Relative Bound] (Delsarte, Goethals, Seidel 75):
= e 1
N (] Sy (for gitror <Tize

Theorem(B.): N&(r) < ;{5 | (1J;O‘)T.

Theorem[Improved Welch](B.): Given unit vectors vy,...,v, € C"
let H be the n x n matrix defined by H; ; = | {v;,v;) |*. Then
1TH'1 < r, where H'is the Moore-Penrose generalised

inverse, and moreover » , .| {v;, v;) fp> ”72 (2 & ) .




New results for regular graphs

Theorem(B.): Let G be a k-regular graph with second and last
eigenvalue As, A,. If the spectral gap satisfies k — Ay < Z, then

k < 2 (k (k—n)j\z) ) S >\2(i\2_‘1;}2(_2>\>\22)—|-1) )\2(3)\2 _|_ 1)7

n

Az(Aa+1)
_>\n i 1_ 2(k=X2) )\27

n—mult(Ag)+1) -
(O2)+1) | o

when G corresponds to a set of equiangular lines meeting the
absolute bound.

with equality in both whenever n+1 = (

Corollary(B.): If & — Xy < n,then k < (1+ 0(1))\3 and
< (L A-a(1 N

In particular, if G is bipartite we have A > (1 — o(1))Vk.
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Theorem[Relative Bound] (Lemmens, Seidel 73): Ny (r) < r

1 — ra?

1
for all a<7.

Proof: Using the Frobenius inner product, orthogonally project
the 7 x r identity matrix I onto the span of v1v],...,v,vf.

Its squared Frobenius norm changes from tr(I71) =r to
ozzn—lr—nl—oz2 .

A Really New Idea: Let V be the r X n matrix with ith column
Urrsothat=V At =101 H 1= Th U
Project symmetric matrices of the form Vz(Vy)T + Vy(Vx)T.




1
log r

Previous approaches in the case o>

Relied on applying Ramsey’s theorem to find a large
independent set in the graph G with vertex set
V(G) = {v1,...,v} and edge set E(G) = {v;v; : (v;,v;) = —ab.

An independent set of this graph corresponds to a set of
vertices with all pairwise inner products = «, i.e. a simplex.

Projecting vertices onto the orthogonal complement of the
span of this simplex allowed one to bound A, the max degree

of the graph G.

New Idea: Instead of looking for such a simplex in the
vertices, recall that v1v7,...,v,v} already form a large simplex

with respect to the Frobenius inner product.

Project onto it!



A new inequality

Definition: Given f : R — R and v € R"” we define f(v) € R”
to be the vector with ith coordinate f(v;).

Theorem(B.): Let M = VTV be the Gram matrix of v1,...,v,
and let f(z) = 2. Then for all z,y € R®

2 2

(@, Ma) (y, My) + (2, My)* )+ ———

1l — «

> (Mz, My)® > (f(Mz), f(My))

"3

with equality whenever n = (

Taking , y to be eigenvectors of M or standard basis vectors
yields bounds on eigenvalues of M or the degrees of G.




(Finite-dimensional) Hilbert spaces

Recall that ., is the Hilbert space of r x r symmetric matrices
with respect to the Frobenius inner product.

Definition: Given a linear map L : R" — %, we let L : ., - R,
denote the adjoint map which is defined by (L# M, v) = (M, Lv)
forall v e R®, M € .%,. For a single matrix X € .#,., we define
X# = L# where L:R' = %, is given by Le; = X.

If we identify each 7 X r matrix with a vector in R™, then L
becomes an r2 x n matrix and L¥ becomes its n x 72 transpose.

Fact: Let Wy,..., W, € %, and define # : R" — .¥, by
We; =W;. Then W (W #*W )~ # 7 is the orthogonal projection

(with respect to the Frobenius inner product) onto the span of
A WL




Theorem(B.): Let M = VTV be the Gram matrix of v1,...,v,
and let f(x) = z%. Then for all z,y € R"®

1—lo%

2

Proof: Define # : R" — 7. by #'e; = v;v] and let & : .4, — .7,
be the orthogonal projection onto the span of v1v{,...,v,9],
sothat Z =W (wW+W) 1w#.

Observe that ### = (1 — o?)I + a?J is invertible, with

2

(wHw) = L, (1 emEs J).

Define X = 2 (Va(Vy)T + Vy(Vz)T) and let u = ##X. Then
IXIB > |2X|3 = XEPX = XFw (0t w) X

1 o’
=1 T
i T8 | (I a’n + 1 a2j>u




Theorem(B.): Let M = VTV be the Gram matrix of vq,...
and let f(x) = z%. Then for all z,y € R"®

1—lo%

2

So we have (1 —a?)||X||% > uTu aan_‘i_aQ uT Ju, where

X =21Va(Vy)T+Vy(Vz)T)and u=#7X.

Now using the fact that (abT,cdT)» = (a,c) (d,b), we compute
(o, Vet = Ve o VenVigr —fen Vi Ve (e ViV
= (Mz);(My);.

By symmetry, we conclude u; = (v;v], X) . = (Mx);(My);, and
thus uTu => . (Mx)i(My); = (f(Mz), f(My)), as well as

uTJu=uTllTu = (37, u; L (Mz)i(My);)* = (Mz, My)?.




Theorem(B.): Let M = VTV be the Gram matrix of v1,...,v,
and let f(x) = z%. Then for all z,y € R"®

2 2

(@ Ma) (g, My) + (@, My)* )+ —————

rgl).

1l — «
)

(Mz, My)* > (f(Mz), f(My))

with equality whenever n = (

So we have 2
(1 —a?)||X || = (f(Mz), f(My)) o (Mz, My)*.

a’n+1—a?

It remains to verify that || X||2 = 1 ({:1;, Mz) (y, My) + (, My>2),
from which the desired inequality follows.

: ) 1
Moreover, recall that .#, has dimension (TJQr ) and-umu S UR U

are linearly independent. Therefore, if n = ("1") then
U101, ..., Un¥;, span .%., in which case & is the identity map

and so we have equality above.




Theorem(B.): Let M = VTV be the Gram matrix of v1,...,v,
and let f(x) = z%. Then for all z,y € R"®

1—la

2

Switching: For any unit vector v; along the ith line, we can
replace it with —v;. This flips all edges and non-edges incident
to v;. Therefore, without loss of generality, we may switch
vo,. L Uslso that v, . wi)i= a forall § > 2|

Corollary(B.): For all ¢ > 2, the degree d(v;) of the ith vertex
of G satisfies

(n— 2d(v;) + % = 2)2 = (n | 0412

r+1 .

with equality whenever n = ("}

Proof: Apply the above theorem with = = e; and y = e;.




Corollary(B.): For all ¢ > 2, the degree d(v;) of the ith vertex
of GG satisfies

(n —2d(v;) + 2 — 2)2
with equality whenever n =

In particular, if n > % (= — 3) then for each i > 2, we

have either d(UZ) < I ) 4;‘4 :

Observation: The Gram matrix M satisfies

=M = 2J — A+ 1=2] where Ais the adjacency matrix of G.

Since M is positive semidefinite

1 1 =




Therefore, letting H = {v; : d(v;) > n — ;= } be the set of high

: n 11—« J 1
degree vertices, we have 2 + =2 > 4 > |H| (1 — =).

In particular, if n > =; then |H| < (1 + o),

In this case, we can actually get a stronger bound by double
counting the edges between H and its complement H*¢:

(1-o(W)H|(n— H) < Y (dw) - |H) Se(H,H) < Y dv) < 7

veH veH¢

Thus |H| < Ho(l) , and using this improved bound in the
above, we actually conclude |H| < 1+Z(1>

1—|—0(1) :

By switching all vertices in H, we obtain a graph with A <




Lemma(B.): If n > 4, then we can choose v, ..., v, such that
the corresponding graph has max degree A < Lt O(L)

24

Recalling that A = 2J + i-2] — -~ M, we have forany y 1 1

yTAy = S2yTy — SSyTMy < =247y,

ldea: As in the Alon-Boppana theorem, use a vertex and its

y'Ay

- arge.

neighbors to construct a vector y L 1 with

Lemma(B.): If n > 5, thenforall t <A, Itol) > 4 t4

Proof: WLOG assume v; has va,...,v:41 as neighbors and

define z € R™ b 1 if 6 ==1 so that 4% — /¢,
4 Ty =< I/E] it el s il B

0 otherwise

The result follows by taking y = = <m7;]1> 1 to be the projection

of x onto the orthogonal complement of 1.




Lemma(B.): If n>> =4, then for all ¢t < A, 12‘;51) > /i — A

Theorem(B.): n < (1 + o(1)) max (%, 2r)

Proof: WLOG suppose that n 2 1 < 2AP2,

apply above lemma with ¢ = ot P50

thatrn < {1 o(h))22-< Lkl

o2

Otherwise, n > 2A3/2 and so taking ¢ = A in the above
lemma gives o) > /A (1 Ag/z) > YA

n 2

Thus A < 1+O?2(1), so that %/2 < 12253) = 0(1) and thus

applying the above inequality again we conclude A < oyt

4o?

Now consider S = M — a.J, and observe that tr(S) = (1 — a)n
and tr(5%) =322, (1 - a)? + (=2a)%d(v;)) < (2+o(1))n.

Using rk(S) < r + 1 and applying the eigenvalue Cauchy-
Schwarz inequality tr(S)? < rk(S) tr(S?) implies the desired.




Future directions for research

Unit vectors corresponding to equiangular lines are
equivalently spherical {a, —a}-codes. Extend methods to all
spherical L-codes with |L| =saswellas L =[-1,q].

Generalize to equiangular subspaces.

Generalize to signed graphs and unitarily-signed graphs
Apply methods to other graph matrices (ex: Laplacian).
There is a conjecture on the multiplicity of the second
eigenvalue of Laplacians on surfaces (due to Colin de

Verdiére). Prove a version of this conjecture for the
adjacency matrix of (regular) graphs: mult(\2) < O(\/|E(G)]).
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