

EQUIANGULAR LINES AND REGULAR GRAPHS

By: Igor Balla

Definition: A set of lines passing through the origin is called equiangular, if every pair of lines make the same angle.

Question: What is the maximum number of equiangular lines in \mathbb{R}^r ?

Considered to be one of the founding problems of algebraic graph theory.

Connections:

- Elliptic geometry
- Frame theory
- Theory of polytopes
- Algebraic number theory
- Quantum information theory

Earliest work:

Haantjes, Seidel 47-48

Blumenthal 49

Van Lint, Seidel 66

Lemmens, Seidel 73

...

Examples

$$r = 2$$
:

Triangle

	4 •
	J.

Icosahedron

3 lines

6 lines

$$r = 7$$
:

28 lines

Take all 28

permutations of the

vector

$$(3,3,-1,-1,-1,-1,-1).$$

r = 23:

276 lines

Schläfli Graph

McLaughlin Graph Theorem[Absolute bound] (Gerzon 73): The number of equiangular lines in \mathbb{R}^r is at most $\binom{r+1}{2}$.

Proof: Let v_1, \ldots, v_n be unit vectors along the given lines. Then $\langle v_i, v_j \rangle = \pm \alpha$ for some $0 \le \alpha < 1$.

Consider the matrices $v_1v_1^\intercal,\ldots,v_nv_n^\intercal$. They live in the $\binom{r+1}{2}$ -dimensional space of symmetric matrices \mathscr{S}_r .

Recalling the Frobenius inner product of matrices

$$\langle A, B \rangle_F = \operatorname{tr}(A^{\mathsf{T}}B) = \sum_{i,j} A_{i,j} B_{i,j}$$

we have
$$\left\langle v_i v_i^\intercal, v_j v_j^\intercal \right\rangle_F = \operatorname{tr}(v_i v_i^\intercal v_j v_j^\intercal) = (v_i^\intercal v_j)^2 = \begin{cases} 1 & i = j \\ \alpha^2 & i \neq j \end{cases}$$

Hence they are linearly independent.

Theorem (Gerzon 73): The number of equiangular lines in \mathbb{R}^r is at most $\binom{r+1}{2}$.

This bound is tight in dimension 2,3, 7 and also 23. No other cases are known.

Theorem (de Caen '00 / Jedwab, Wiebe '15 / Greaves, et al. '15): There exist $\Omega(r^2)$ equiangular lines in \mathbb{R}^r .

These constructions all have $\alpha = \Theta\left(\frac{1}{\sqrt{r}}\right)$.

Theorem (Neumann 73): If n>2r then $\frac{1-\alpha}{2\alpha}$ is an integer.

Question (Lemmens, Seidel 73):

Determine $N_{\alpha}(r)$, the maximum number of equiangular lines in \mathbb{R}^r with common angle $\arccos(\alpha)$?

What is known?

Theorem[Relative Bound] (Lemmens, Seidel 73): $N_{\alpha}(r) \leq r \frac{1-\alpha^2}{1-r\alpha^2}$ for all $\alpha < \frac{1}{\sqrt{r}}$.

Theorem (B., Dräxler, Keevash, Sudakov 17): $N_{\alpha}(r) \leq 2r-2$ for all $\alpha \gg \frac{1}{\sqrt{\log r}}$ with equality if and only if $\alpha=1/3$.

Question: What about for $\frac{1}{\sqrt{r}} \le \alpha \le O\left(\frac{1}{\sqrt{\log r}}\right)$?

Theorem (Glazyrin, Yu 18): $N_{\alpha}(r) \leq \left(\frac{2}{3\alpha^2} + \frac{4}{7}\right)r + 2$ for all $\alpha \leq \frac{1}{3}$.

Theorem (Jiang, Tidor, Yao, Zhang, Zhao 19): Let k be the minimum number of vertices in a graph with spectral radius $\frac{1-\alpha}{2\alpha}$. Then $N_{\alpha}(r) = \left \lfloor \frac{k(r-1)}{(k-1)} \right \rfloor$ for all $\alpha \geq \frac{Ck}{\log \log r}$, where C > 0 is a constant.

New results

Theorem(B.):
$$N_{\alpha}(r) \leq \frac{\sqrt{r}}{2\alpha^3} + \frac{(1+\alpha)r}{2\alpha}$$
.

Based on bounding eigenvalues of a Gram matrix.

Theorem(B.):
$$N_{\alpha}(r) \leq \max\left(\frac{2}{\alpha^{5}} + \frac{2}{\alpha^{3}(1-\alpha)}, \left(2 + \frac{8\alpha^{2}}{(1-\alpha)^{2}}\right)(r+1)\right)$$

= $(1+o(1))\max\left(\frac{2}{\alpha^{5}}, 2r\right)$.

 Based on bounding degrees of a graph, bootstrapped via an Alon-Boppana theorem.

Theorem(B.): Let $s \geq 2$ be an integer and suppose that

$$lpha\ggrac{1}{r^{1/(2s+1)}}$$
 . Then $N_lpha(r)\leq (1+o(1))\left(1+rac{1}{4\cos^2\left(rac{\pi}{s+2}
ight)}
ight)r$.

In particular, if $s \to \infty$ then $N_{\alpha}(r) \le (1 + o(1)) \frac{5}{4}r$.

• Based on improved Alon-Boppana theorem (Jiang-Polyanskii)

New results in the complex setting

Given a pair of complex lines $U, V \subset \mathbb{C}^r$, the quantity $|\langle u, v \rangle|$ is the same for all unit vectors $u \in U, v \in V$ and so $\arccos |\langle u, v \rangle|$ is called the Hermitian angle between U and V.

We define $N_{\alpha}^{\mathbb{C}}(r)$ to be the maximum number of complex equiangular lines in \mathbb{C}^r with common Hermitian angle $\arccos(\alpha)$.

Theorem[Absolute bound] (Delsarte, Goethals, Seidel 75): $N_{lpha}^{\mathbb{C}}(r) \leq r^2$

Collections of r^2 complex equiangular lines in \mathbb{C}^r are known as SICs/SIC-POVMs and their existence has great theoretical and practical importance in quantum theory.

New results in the complex setting

Conjecture (Zauner 99): For each $r \in \mathbb{N}$, $\max_{\alpha} N_{\alpha}^{\mathbb{C}}(r) = r^2$ and a construction can be obtained as the orbit of a vector under the action of a Weyl-Heisenberg group.

Theorem[Relative Bound] (Delsarte, Goethals, Seidel 75):

$$N_{\alpha}^{\mathbb{C}}(r) \leq r \frac{1-\alpha^2}{1-r\alpha^2} \quad \text{for all} \quad \alpha < \frac{1}{\sqrt{r}} \, .$$

Theorem(B.):
$$N_{\alpha}^{\mathbb{C}}(r) \leq \frac{\sqrt{r}}{\alpha^3} + \frac{(1+\alpha)r}{\alpha}$$
.

Theorem[Improved Welch](B.): Given unit vectors $v_1,\ldots,v_n\in\mathbb{C}^r$ let H be the $n\times n$ matrix defined by $H_{i,j}=|\langle v_i,v_j\rangle|^2$. Then $\mathbb{1}^\intercal H^\dagger \mathbb{1} \leq r$, where H^\dagger is the Moore-Penrose generalised inverse, and moreover $\sum_{i,j}|\langle v_i,v_j\rangle|^2\geq \frac{n^2}{r}\left(2-\frac{\mathbb{1}^\intercal H^\dagger \mathbb{1}}{r}\right)$.

New results for regular graphs

Theorem(B.): Let G be a k-regular graph with second and last eigenvalue λ_2, λ_n . If the spectral gap satisfies $k - \lambda_2 < \frac{n}{2}$, then

$$k < 2\left(k - \frac{(k - \lambda_2)^2}{n}\right) \le \frac{\lambda_2(\lambda_2 + 1)(2\lambda_2 + 1)}{1 - \frac{2(k - \lambda_2)}{n}} - \lambda_2(3\lambda_2 + 1),$$
$$-\lambda_n \le \frac{\lambda_2(\lambda_2 + 1)}{1 - \frac{2(k - \lambda_2)}{n}} - \lambda_2,$$

with equality in both whenever $n+1=\binom{n-\operatorname{mult}(\lambda_2)+1}{2}$, i.e. when G corresponds to a set of equiangular lines meeting the absolute bound.

Corollary(B.): If
$$k-\lambda_2\ll n$$
, then $k\leq (1+o(1))\lambda_2^3$ and $-\lambda_n\leq (1+o(1))\lambda_2^2$.

In particular, if G is bipartite we have $\lambda_2 \geq (1 - o(1))\sqrt{k}$.

Theorem[Relative Bound] (Lemmens, Seidel 73): $N_{\alpha}(r) \leq r \frac{1-\alpha^2}{1-r\alpha^2}$ for all $\alpha < \frac{1}{\sqrt{r}}$.

Proof: Using the Frobenius inner product, orthogonally project the $r \times r$ identity matrix I onto the span of $v_1v_1^\intercal, \ldots, v_nv_n^\intercal$.

Its squared Frobenius norm changes from $\operatorname{tr}(I^\intercal I) = r$ to

$$\frac{n}{\alpha^2n+1-\alpha^2}$$

A Really New Idea: Let V be the $r \times n$ matrix with ith column v_i , so that $Vx = x_1v_1 + \ldots, x_nv_n$.

Project symmetric matrices of the form $Vx(Vy)^{\intercal} + Vy(Vx)^{\intercal}$.

Previous approaches in the case $\alpha \gg \frac{1}{\log r}$

Relied on applying Ramsey's theorem to find a large independent set in the graph G with vertex set $V(G) = \{v_1, \ldots, v_n\}$ and edge set $E(G) = \{v_i v_j : \langle v_i, v_j \rangle = -\alpha\}$.

An independent set of this graph corresponds to a set of vertices with all pairwise inner products $= \alpha$, i.e. a simplex.

Projecting vertices onto the orthogonal complement of the span of this simplex allowed one to bound Δ , the max degree of the graph G.

New Idea: Instead of looking for such a simplex in the vertices, recall that $v_1v_1^\mathsf{T},\ldots,v_nv_n^\mathsf{T}$ already form a large simplex with respect to the Frobenius inner product.

Project onto it!

A new inequality

Definition: Given $f: \mathbb{R} \to \mathbb{R}$ and $v \in \mathbb{R}^n$ we define $f(v) \in \mathbb{R}^n$ to be the vector with ith coordinate $f(v_i)$.

Theorem(B.): Let $M=V^\intercal V$ be the Gram matrix of v_1,\ldots,v_n and let $f(x)=x^2$. Then for all $x,y\in\mathbb{R}^n$

$$\frac{1-\alpha^2}{2} \left(\langle x, Mx \rangle \langle y, My \rangle + \langle x, My \rangle^2 \right) + \frac{\alpha^2}{\alpha^2 n + 1 - \alpha^2} \left\langle Mx, My \right\rangle^2 \ge \langle f(Mx), f(My) \rangle$$

with equality whenever $n = \binom{r+1}{2}$.

Taking x, y to be eigenvectors of M or standard basis vectors yields bounds on eigenvalues of M or the degrees of G.

(Finite-dimensional) Hilbert spaces

Recall that \mathscr{S}_r is the Hilbert space of $r \times r$ symmetric matrices with respect to the Frobenius inner product.

Definition: Given a linear map $L: \mathbb{R}^n \to \mathscr{S}_r$, we let $L^\#: \mathscr{S}_r \to \mathbb{R}_n$ denote the *adjoint map* which is defined by $\langle L^\# M, v \rangle = \langle M, Lv \rangle_F$ for all $v \in \mathbb{R}^n, M \in \mathscr{S}_r$. For a single matrix $X \in \mathscr{S}_r$, we define $X^\# = L^\#$ where $L: \mathbb{R}^1 \to \mathscr{S}_r$ is given by $Le_1 = X$.

If we identify each $r \times r$ matrix with a vector in \mathbb{R}^{r^2} , then L becomes an $r^2 \times n$ matrix and $L^\#$ becomes its $n \times r^2$ transpose.

Fact: Let $W_1, \ldots, W_n \in \mathscr{S}_r$ and define $\mathscr{W}: \mathbb{R}^n \to \mathscr{S}_r$ by $\mathscr{W}e_i = W_i$. Then $\mathscr{W}(\mathscr{W}^\#\mathscr{W})^{-1}\mathscr{W}^\#$ is the orthogonal projection (with respect to the Frobenius inner product) onto the span of W_1, \ldots, W_n .

$$\frac{1-\alpha^2}{2} \left(\langle x, Mx \rangle \langle y, My \rangle + \langle x, My \rangle^2 \right) + \frac{\alpha^2}{\alpha^2 n + 1 - \alpha^2} \langle Mx, My \rangle^2 \ge \langle f(Mx), f(My) \rangle$$

with equality whenever $n = \binom{r+1}{2}$.

Proof: Define $\mathscr{W}: \mathbb{R}^n \to \mathscr{S}_r$ by $\mathscr{W}e_i = v_iv_i^\mathsf{T}$ and let $\mathscr{P}: \mathscr{S}_r \to \mathscr{S}_r$ be the orthogonal projection onto the span of $v_1v_1^\mathsf{T}, \ldots, v_nv_n^\mathsf{T}$, so that $\mathscr{P} = \mathscr{W}(\mathscr{W}^\#\mathscr{W})^{-1}\mathscr{W}^\#$.

Observe that
$$\mathscr{W}^\#\mathscr{W}=(1-\alpha^2)I+\alpha^2J$$
 is invertible, with $(\mathscr{W}^\#\mathscr{W})^{-1}=\frac{1}{1-\alpha^2}\left(I-\frac{\alpha^2}{\alpha^2n+1-\alpha^2}J\right)$.

Define $X=\frac{1}{2}\left(Vx(Vy)^\intercal+Vy(Vx)^\intercal\right)$ and let $u=\mathscr{W}^\#X$. Then $||X||_F^2\geq ||\mathscr{P}X||_F^2=X^\#\mathscr{P}X=X^\#\mathscr{W}(\mathscr{W}^\#\mathscr{W})^{-1}\mathscr{W}^\#X$ $=\frac{1}{1-\alpha^2}u^\intercal\left(I-\frac{\alpha^2}{\alpha^2n+1-\alpha^2}J\right)u$

$$\frac{1-\alpha^2}{2} \left(\langle x, Mx \rangle \langle y, My \rangle + \langle x, My \rangle^2 \right) + \frac{\alpha^2}{\alpha^2 n + 1 - \alpha^2} \left\langle Mx, My \right\rangle^2 \ge \langle f(Mx), f(My) \rangle$$

with equality whenever $n = \binom{r+1}{2}$.

So we have $(1-\alpha^2)||X||_F^2 \geq u^\intercal u - \frac{\alpha^2}{\alpha^2 n + 1 - \alpha^2} u^\intercal J u$, where $X = \frac{1}{2} \left(V x (V y)^\intercal + V y (V x)^\intercal \right)$ and $u = \mathscr{W}^\# X$.

Now using the fact that $\langle ab^\intercal, cd^\intercal \rangle_F = \langle a, c \rangle \langle d, b \rangle$, we compute $\langle v_i v_i^\intercal, Vx(Vy)^\intercal \rangle_F = \langle Ve_i, Vx \rangle \langle Ve_i, Vy \rangle = \langle e_i, V^\intercal Vx \rangle \langle e_i, V^\intercal Vy \rangle = (Mx)_i (My)_i.$

By symmetry, we conclude $u_i=\langle v_iv_i^\intercal,X\rangle_F=(Mx)_i(My)_i$, and thus $u^\intercal u=\sum_{i=1}^n{(Mx)_i^2(My)_i^2}=\langle f(Mx),f(My)\rangle$, as well as

$$u^{\mathsf{T}}Ju = u^{\mathsf{T}}\mathbb{1}^{\mathsf{T}}u = \left(\sum_{i=1}^{n} u_i\right)^2 = \left(\sum_{i=1}^{n} (Mx)_i (My)_i\right)^2 = \langle Mx, My \rangle^2.$$

$$\frac{1-\alpha^2}{2} \left(\langle x, Mx \rangle \langle y, My \rangle + \langle x, My \rangle^2 \right) + \frac{\alpha^2}{\alpha^2 n + 1 - \alpha^2} \left\langle Mx, My \right\rangle^2 \ge \langle f(Mx), f(My) \rangle$$

with equality whenever $n = \binom{r+1}{2}$.

So we have

$$(1 - \alpha^2)||X||_F^2 \ge \langle f(Mx), f(My) \rangle - \frac{\alpha^2}{\alpha^2 n + 1 - \alpha^2} \langle Mx, My \rangle^2.$$

It remains to verify that $||X||_F^2 = \frac{1}{2} \left(\langle x, Mx \rangle \langle y, My \rangle + \langle x, My \rangle^2 \right)$, from which the desired inequality follows.

Moreover, recall that \mathscr{S}_r has dimension $\binom{r+1}{2}$ and $v_1v_1^\intercal,\ldots,v_nv_n^\intercal$ are linearly independent. Therefore, if $n=\binom{r+1}{2}$ then $v_1v_1^\intercal,\ldots,v_nv_n^\intercal$ span \mathscr{S}_r , in which case \mathscr{P} is the identity map and so we have equality above.

$$\frac{1-\alpha^2}{2} \left(\langle x, Mx \rangle \langle y, My \rangle + \langle x, My \rangle^2 \right) + \frac{\alpha^2}{\alpha^2 n + 1 - \alpha^2} \left\langle Mx, My \right\rangle^2 \ge \left\langle f(Mx), f(My) \right\rangle$$

with equality whenever $n = \binom{r+1}{2}$.

Switching: For any unit vector v_i along the ith line, we can replace it with $-v_i$. This flips all edges and non-edges incident to v_i . Therefore, without loss of generality, we may switch v_2, \ldots, v_n so that $\langle v_i, v_1 \rangle = \alpha$ for all $i \geq 2$.

Corollary(B.): For all $i \geq 2$, the degree $d(v_i)$ of the ith vertex of G satisfies

$$\left(n-2d(v_i)+\frac{2}{\alpha}-2\right)^2\geq \left(n+\frac{1}{\alpha^2}-1\right)\left(n-\frac{1}{2}\left(\frac{1}{\alpha^2}-1\right)\left(\frac{1}{\alpha^2}-3\right)\right),$$
 with equality whenever $n=\binom{r+1}{2}.$

Proof: Apply the above theorem with $x = e_1$ and $y = e_i$.

Corollary(B.): For all $i \geq 2$, the degree $d(v_i)$ of the ith vertex of G satisfies

$$\left(n - 2d(v_i) + \frac{2}{\alpha} - 2\right)^2 \ge \left(n + \frac{1}{\alpha^2} - 1\right) \left(n - \frac{1}{2} \left(\frac{1}{\alpha^2} - 1\right) \left(\frac{1}{\alpha^2} - 3\right)\right),$$
 with equality whenever $n = \binom{r+1}{2}$.

In particular, if $n>\frac{1}{2}\left(\frac{1}{\alpha^2}-1\right)\left(\frac{1}{\alpha^2}-3\right)$ then for each $i\geq 2$, we have either $d(v_i)<\frac{1}{4\alpha^4}$ or $d(v_i)>n-\frac{1}{4\alpha^4}$.

Observation: The Gram matrix M satisfies $\frac{1}{2\alpha}M=\frac{1}{2}J-A+\frac{1-\alpha}{2\alpha}I$ where A is the adjacency matrix of G.

Since M is positive semidefinite

$$0 \le \mathbb{1}^{\mathsf{T}} \frac{1}{2\alpha} M \mathbb{1} = \frac{1}{2} \mathbb{1}^{\mathsf{T}} J \mathbb{1} - \mathbb{1}^{\mathsf{T}} A \mathbb{1} + \frac{1 - \alpha}{2\alpha} \mathbb{1}^{\mathsf{T}} I \mathbb{1}$$
$$= \frac{n^2}{2} - \sum_{i=1}^n d(v_i) + \frac{1 - \alpha}{2\alpha} n,$$

so that the average degree \overline{d} of G is at most $\frac{n}{2} + \frac{1-\alpha}{2\alpha}$.

Therefore, letting $H=\{v_i: d(v_i)>n-\frac{1}{4\alpha^4}\}$ be the set of high degree vertices, we have $\frac{n}{2}+\frac{1-\alpha}{2\alpha}\geq \overline{d}\geq |H|\left(1-\frac{1}{4\alpha^4n}\right)$.

In particular, if $n \gg \frac{1}{\alpha^4}$ then $|H| \leq (1 + o(1))\frac{n}{2}$.

In this case, we can actually get a stronger bound by double counting the edges between H and its complement H^c :

$$(1 - o(1))|H|(n - |H|) \le \sum_{v \in H} (d(v) - |H|) \le e(H, H^c) \le \sum_{v \in H^c} d(v) \le \frac{n}{4\alpha^4}$$

Thus $|H| \leq \frac{1+o(1)}{2\alpha^4}$, and using this improved bound in the above, we actually conclude $|H| \leq \frac{1+o(1)}{4\alpha^4}$.

By switching all vertices in H, we obtain a graph with $\Delta \leq \frac{1+o(1)}{2\alpha^4}$.

Lemma(B.): If $n \gg \frac{1}{\alpha^4}$, then we can choose v_1, \ldots, v_n such that the corresponding graph has max degree $\Delta \leq \frac{1+o(1)}{2\alpha^4}$.

Recalling that
$$A=\frac{1}{2}J+\frac{1-\alpha}{2\alpha}I-\frac{1}{2\alpha}M$$
, we have for any $y\perp 1$
$$y^\intercal Ay=\frac{1-\alpha}{2\alpha}y^\intercal y-\frac{1}{2\alpha}y^\intercal My\leq \frac{1-\alpha}{2\alpha}y^\intercal y.$$

Idea: As in the Alon-Boppana theorem, use a vertex and its neighbors to construct a vector $y \perp 1$ with $\frac{y^{\mathsf{T}}Ay}{y^{\mathsf{T}}y}$ large.

Lemma(B.): If
$$n\gg \frac{1}{\alpha^4}$$
, then for all $t\leq \Delta$, $\frac{1+o(1)}{2\alpha}\geq \sqrt{t}-\frac{t\Delta}{n}$.

Proof: WLOG assume v_1 has v_2, \ldots, v_{t+1} as neighbors and define $x \in \mathbb{R}^n$ by $x_i = \begin{cases} 1 & \text{if } i = 1 \\ 1/\sqrt{t} & \text{if } 2 \leq i \leq t+1 \\ 0 & \text{otherwise} \end{cases}$, so that $\frac{x^\intercal Ax}{x^\intercal x} = \sqrt{t}$.

The result follows by taking $y = x - \frac{\langle x, 1 \rangle}{n} 1$ to be the projection of x onto the orthogonal complement of 1.

Lemma(B.): If $n\gg \frac{1}{\alpha^4}$, then for all $t\leq \Delta$, $\frac{1+o(1)}{2\alpha}\geq \sqrt{t}-\frac{t\Delta}{n}$.

Theorem(B.): $n \le (1 + o(1)) \max(\frac{1}{\alpha^5}, 2r)$

Proof: WLOG suppose that $n \geq \frac{1}{\alpha^5} \gg \frac{1}{\alpha^4}$. If $n \leq 2\Delta^{3/2}$, apply above lemma with $t = \frac{n^2}{4\Delta^2}$ to conclude $\frac{1+o(1)}{2\alpha} \geq \frac{n}{4\Delta}$, so that $n \leq (1+o(1))\frac{2\Delta}{\alpha} \leq \frac{1+o(1)}{\alpha^5}$.

Otherwise, $n>2\Delta^{3/2}$ and so taking $t=\Delta$ in the above lemma gives $\frac{1+o(1)}{2\alpha}\geq\sqrt{\Delta}\left(1-\frac{\Delta^{3/2}}{n}\right)>\frac{\sqrt{\Delta}}{2}$.

Thus $\Delta \leq \frac{1+o(1)}{\alpha^2}$, so that $\frac{\Delta^{3/2}}{n} \leq \frac{1+o(1)}{\alpha^3 n} = o(1)$ and thus applying the above inequality again we conclude $\Delta \leq \frac{1+o(1)}{4\alpha^2}$.

Now consider $S=M-\alpha J$, and observe that $\operatorname{tr}(S)=(1-\alpha)n$ and $\operatorname{tr}(S^2)=\sum_{i=1}^n \left((1-\alpha)^2+(-2\alpha)^2d(v_i)\right)\leq (2+o(1))n$.

Using $\operatorname{rk}(S) \leq r+1$ and applying the eigenvalue Cauchy-Schwarz inequality $\operatorname{tr}(S)^2 \leq \operatorname{rk}(S)\operatorname{tr}(S^2)$ implies the desired. \square

Future directions for research

- Unit vectors corresponding to equiangular lines are equivalently spherical $\{\alpha, -\alpha\}$ -codes. Extend methods to all spherical L-codes with |L|=s as well as $L=[-1,\alpha]$.
- Generalize to equiangular subspaces.
- Generalize to signed graphs and unitarily-signed graphs
- Apply methods to other graph matrices (ex: Laplacian).
- There is a conjecture on the multiplicity of the second eigenvalue of Laplacians on surfaces (due to Colin de Verdière). Prove a version of this conjecture for the adjacency matrix of (regular) graphs: $\operatorname{mult}(\lambda_2) \leq O(\sqrt{|E(G)|})$.

