

# EQUIANGULAR LINES VIA MATRIX PROJECTION

By: Igor Balla

Definition: A set of lines passing through the origin is called equiangular, if every pair of lines make the same angle.

Question: Determine N(r), the maximum number of equiangular lines in  $\mathbb{R}^r$ .

#### **Connections:**

- Elliptic geometry
- Frame theory
- Theory of polytopes
- Banach space theory
- Spectral graph theory
- Algebraic number theory
- Quantum information theory

#### **Earliest work:**

Haantjes, Seidel 47-48

Blumenthal 49

Van Lint, Seidel 66

Lemmens, Seidel 73

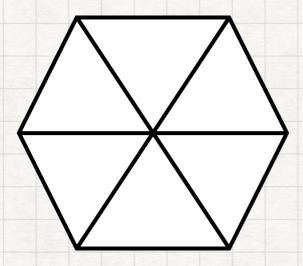
...

## Examples

r = 2: Regular Hexagon

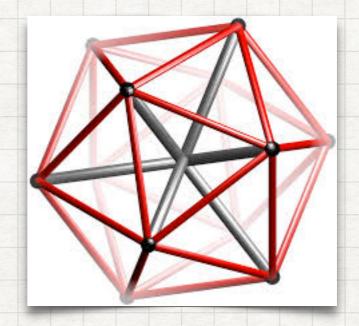
Regular Icosahedron

3 lines



6 lines

r = 3:



r = 7:

28 lines

Take all 28

permutations of the

vector

$$(3,3,-1,-1,-1,-1,-1,-1).$$

r = 23:

276 lines

Schläfli Graph (E8 lattice) McLaughlin Graph (Leech lattice) Theorem[Absolute bound] (Gerzon 73):  $N(r) \leq {r+1 \choose 2}$ .

Proof: Let  $v_1, \ldots, v_n$  be unit vectors along the given lines. Then  $\langle v_i, v_j \rangle = \pm \alpha$  for some  $0 \le \alpha < 1$ .

Consider the matrices  $v_1v_1^\intercal,\ldots,v_nv_n^\intercal$ . They live in the  $\binom{r+1}{2}$ -dimensional space of symmetric matrices  $\mathscr{S}_r$ .

Recalling the Frobenius inner product of matrices

$$\langle A, B \rangle_F = \operatorname{tr}(A^{\mathsf{T}}B) = \sum_{i,j} A_{i,j} B_{i,j}$$

we have  $\left\langle v_i v_i^\intercal, v_j v_j^\intercal \right\rangle_F = \operatorname{tr}(v_i v_i^\intercal v_j v_j^\intercal) = (v_i^\intercal v_j)^2 = \begin{cases} 1 & i = j \\ \alpha^2 & i \neq j \end{cases}$ .

Hence they are linearly independent.

#### What is known?

Theorem[Absolute bound] (Gerzon 73):  $N(r) \leq {r+1 \choose 2}$ .

- tight in dimension 2,3, 7 and 23. No other cases of equality are known.

Theorem (de Caen 00):  $N(r) \geq \Omega(r^2)$  .

Question (Lemmens, Seidel 73):

Determine  $N_{\alpha}(r)$ , the maximum number of equiangular lines in  $\mathbb{R}^r$  with common angle  $\arccos(\alpha)$ , especially when  $\alpha=1/3,1/5,1/7,\ldots$ 

Theorem (Neumann 73): If  $N_{\alpha}(r)>2r$  then  $\frac{1}{2}\left(\frac{1}{\alpha}-1\right)\in\mathbb{N}$ .

Theorem[Relative Bound] (Lemmens, Seidel 73):  $N_{\alpha}(r) \leq r \frac{1-\alpha^2}{1-r\alpha^2}$  for all  $r \leq 1/\alpha^2 - 2$ .

## Recent progress

Theorem (B., Dräxler, Keevash, Sudakov 17):  $N_{\alpha}(r) \leq 2r - 2$  if r is exponentially large in  $1/\alpha^2$ , with equality if and only if  $\alpha = 1/3$ .

Theorem (Jiang, Tidor, Yao, Zhang, Zhao 19): Let  $k_{\alpha}$  be the minimum number of vertices in a graph with spectral radius  $\frac{1}{2}\left(\frac{1}{\alpha}-1\right)$ . If r is doubly exponentially large in  $k_{\alpha}/\alpha$ , then

$$N_{\alpha}(r) = \left\lfloor \frac{r-1}{1-1/k_{\alpha}} \right\rfloor.$$

Question: What about for  $1/\alpha^2 - 2 \le r \le O(2^{1/\alpha^2})$ ?

Theorem (Yu 17):  $N_{\alpha}(r) \leq {1/\alpha^2-1 \choose 2}$  for  $1/\alpha^2-2 \leq r \leq 3/\alpha^2-16$ .

Theorem (Glazyrin, Yu 18):  $N_{\alpha}(r) \leq \left(\frac{2}{3\alpha^2} + \frac{4}{7}\right)r + 2$  for all  $\alpha \leq \frac{1}{3}$ .

## New results

**Theorem**(B.): There exists a constant C>0 such that as  $\alpha\to 0$ ,

$$N_{\alpha}(r) \leq \begin{cases} \binom{1/\alpha^2-1}{2} & \text{if } \frac{1}{\alpha^2}-2 < r \leq \frac{1-o(1)}{4\alpha^4} \\ (2+o(1))r & \text{if } \frac{1-o(1)}{4\alpha^4} < r \leq O\left(\frac{1}{\alpha^5}\right) \\ \left(1+\frac{1+o(1)}{4\cos^2\left(\frac{\pi}{q+2}\right)}\right)r & \text{if } \frac{1}{\alpha^{2q+1}} \ll r \leq O\left(\frac{1}{\alpha^{2q+3}}\right) \text{ for integer } q \geq 2 \\ \left(\frac{5}{4}+o(1)\right)r & \text{if } 1/\alpha^{\omega(1)} \leq r < 2^{1/\alpha^{4C}} \\ \left(1+\frac{C\log(1/\alpha)}{\log\log r}\right)r & \text{if } 2^{1/\alpha^{4C}} \leq r < 2^{1/\alpha^{C(k_{\alpha}-1)}} \\ \left(\frac{r-1}{1-1/k_{\alpha}}\right) & \text{always equality!} & \text{if } 2^{1/\alpha^{C(k_{\alpha}-1)}} \leq r. \end{cases}$$

Simple lower bounds:  $N_{\alpha}(r) \geq r$  for all  $\alpha, r$ , and if  $k_{\alpha} < \infty$ , then  $N_{\alpha}(r) \geq \left|\frac{r-1}{1-1/k_{\alpha}}\right|$ .

# New results for regular graphs

Corollary(B.): Let G be a k-regular graph with second and last eigenvalue  $\lambda_2, \lambda_n$ . If the spectral gap satisfies  $k - \lambda_2 \ll n$ , then

$$\lambda_2 \ge (1 - o(1))k^{1/3}$$
 and  $\lambda_2 \ge (1 - o(1))\sqrt{-\lambda_n}$ .

Theorem(B.): If G is a k-regular graph with  $k-\lambda_2<\frac{n}{2}$ , then

$$2\left(k - \frac{(k - \lambda_2)^2}{n}\right) \le \frac{\lambda_2(\lambda_2 + 1)(2\lambda_2 + 1)}{1 - \frac{2(k - \lambda_2)}{n}} - \lambda_2(3\lambda_2 + 1),$$
$$-\lambda_n \le \frac{\lambda_2(\lambda_2 + 1)}{1 - \frac{2(k - \lambda_2)}{n}} - \lambda_2,$$

with equality in both whenever  $n+1=\binom{n-\operatorname{mult}(\lambda_2)+1}{2}$ , i.e. when G corresponds to a set of real equiangular lines meeting the absolute bound in dimension  $r=n-\operatorname{mult}(\lambda_2)$ .

Corollary(B.): Let G be a k-regular graph with second eigenvalue  $\lambda_2$ . If the spectral gap satisfies  $k-\lambda_2\ll n$ , then  $\lambda_2\geq (1-o(1))k^{1/3}$ .

Proof sketch: Starting with the adjacency matrix A, let  $\alpha=\frac{1}{2\lambda_2+1}$  and define  $M=(1-\alpha)I+\alpha J-2\alpha A$ .

Straightforward to check that M is positive semidefinite, so it is the Gram matrix of some unit vectors  $v_1, \ldots, v_n$ .

Note that  $\overline{v} = \frac{1}{n} \sum_{i=1}^{n} v_i$  is equidistant from each  $v_i$ .

Project  $X = \overline{v}v_1^{\mathsf{T}} + v_1\overline{v}^{\mathsf{T}}$  onto the span of  $v_1v_1^{\mathsf{T}}, \ldots, v_nv_n^{\mathsf{T}}$  (orthogonally with respect to the Frobenius inner product).

The (Frobenius) norm of X can only decrease!

# New results in the complex setting

Given a pair of complex lines  $U, V \subset \mathbb{C}^r$ , the quantity  $|\langle u, v \rangle|$  is the same for all unit vectors  $u \in U, v \in V$  and so  $\arccos |\langle u, v \rangle|$  is called the **Hermitian angle** between U and V.

We define  $N_{\alpha}^{\mathbb{C}}(r)$  to be the maximum number of complex equiangular lines in  $\mathbb{C}^r$  with common Hermitian angle  $\arccos(\alpha)$ .

Theorem[Absolute bound] (Delsarte, Goethals, Seidel 75):  $N_{lpha}^{\mathbb{C}}(r) \leq r^2$ .

Conjecture (Zauner 99): For each  $r \in \mathbb{N}$ ,  $\max_{\alpha} N_{\alpha}^{\mathbb{C}}(r) = r^2$  and a construction can be obtained as the orbit of a vector under the action of a Weyl-Heisenberg group.

Collections of  $r^2$  complex equiangular lines in  $\mathbb{C}^r$  are known as SICs/SIC-POVMs in quantum information theory.

# New results in the complex setting

Theorem[Relative Bound] (Delsarte, Goethals, Seidel 75):

$$N_{\alpha}^{\mathbb{C}}(r) \leq r \frac{1-\alpha^2}{1-r\alpha^2}$$
 for all  $r \leq 1/\alpha^2 - 1$ .

Theorem(B.): If  $r \leq \frac{1-o(1)}{\alpha^3}$ , then  $N_{\alpha}^{\mathbb{C}}(r) \leq \left(\frac{1}{\alpha^2} - 1\right)^2$ , with equality if and only if there exists a SIC in  $1/\alpha^2 - 1$  dimensions.

Otherwise 
$$N_{\alpha}^{\mathbb{C}}(r) \leq \frac{1+\alpha}{\alpha}r + O\left(\frac{1}{\alpha^3}\right)$$
.

## Future directions for research

- Unit vectors corresponding to equiangular lines are equivalently spherical  $\{\alpha, -\alpha\}$ -codes. Extend methods to more general spherical L-codes.
- Prove an appropriate generalization of the usual Alon-Boppana theorem to determine  $N_{\alpha}^{\mathbb{C}}(r)$  up to a multiplicative constant.
- Generalize to equiangular subspaces.
- Generalize to signed graphs and unitarily-signed graphs.

