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Connections: Earliest work:
o Elliptic geometry Haantjes, Seidel 47-48
* Frame theory Blumenthal 49

Theory of polytopes Van Lint, Seidel 66
Banach space theory Lemmens, Seidel 73
Spectral graph theory

Algebraic number theory
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Proof: Let v1,...,v, be unit vectors along the given lines.
Then (v, v;) = +a forsome| (0 < a < 1.

Consider the matrices v1v1, ..., vn;,. They live in the space of

symmetric 7 X r matrices, which has dimension (7).

Recalling the Frobenius inner product of matrices
(A B, = {r(ATB) ZA B ;

we have (v;v], vjv}>F = tr(viv vjv5) = (v] v

Hence they are linearly independent.
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What is known?
Theorem[Absolute bound] (Gerzon 73): N(r) < ("57).

- tight in dimension 2,3, 7 and 23. No other cases of equality
are known.

Theorem (de Caen 00): N(T) = Q(TZ) :

Question (Lemmens, Seidel 73):

Determine N,(r), the maximum number of equiangular lines

in R" with common angle arccos(a), especially when
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Fact: N.(r) > r.

Theorem (Neumann 73): If Noz(r) >-2¢ then %

Theorem[Relative Bound] (Lemmens, Seidel 73): N, (r) < r

forall r <1/a® — 2.
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Corollary(B.): Let G be a k-regular graph with second and last
eigenvalue Az, A,. If the spectral gap satisfies £ — Ay < n, then

Yo = (T=o(1 kP and | A= (= o(1)v =20

Theorem(B.): If G is a k-regular graph with k£ — Ay < %, then

n

2 (b — E=2al) < 2aQed)Batl) _ 3,305 + 1),

e =

mn

Az (Aa+1)
_)\n S 1_2(k—>\2) )\27

mn

with equality in both whenever n 41 = (”_mmg(’\QHl), i.e.

when G corresponds to a set of real equiangular lines meeting
the absolute bound in dimension r = n — mult(As).
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Proof sketch: Starting with the adjacency matrix A, let

a = 507 and define M = (1 — )] + aJ — 2aA.
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span of v1v],...,v,v} (with respect to the Frobenius inner

product).

The (Frobenius) norm of X can only decrease!
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"Switching argument”: negate some of the vectors so that the
eigenvector x corresponding to A; has all nonnegative entries.

Consider the graph with vertices V1, ..., Vn such that v;v; forms
an edge if and only if (v;,v;) = —a.
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Since the (Frobenius) norm can only decrease, a calculation
gives yields that the degree of v; satisfies d(v;) < O (1/a?).

Using a variant of the usual Alon-Boppana theorem, we can

1

bootstrap this bound to d(v;) < 7= .

The second bound n < (2 + o(1))r then follows by applying
I

k(H)tr(H?) with H=M — aJ.

the inequality tr(H)?
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Given a pair of complex lines U,V C C’ the quantity | (u,v) | is
the same for all unit vectors u € U,v € V and so arccos | {u,v) |
is called the Hermitian angle between U and V.

We define NE(r) to be the maximum number of complex
equiangular lines in C” with common Hermitian angle arccos(«).

Theorem[Absolute bound] (Delsarte, Goethals, Seidel 75): Ng (= T

Conjecture (Zauner 99): For each r € N, max, N5 (r) = 72 and a
construction can be obtained as the orbit of a vector under
the action of a Weyl-Heisenberg group.

Collections of r“complex equiangular lines in C" are known as
SICs/SIC-POVMs in quantum information theory.
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Theorem[Relative Bound] (Delsarte, Goethals, Seidel 75):

2

NE(r) < rl=2; forall r<1/a®—1.

Theorem(B.): If r < 1_;3(1) ,then N{(r) < (25 — 1)2, with
equality if and only if there exists a SIC in 1/a# — 1 dimensions.

Otherwise NE(r) < £2r + O ().

oS




Future directions for research

Unit vectors corresponding to equiangular lines are
equivalently spherical {a, —a}-codes. Extend methods to
more general spherical L-codes.

Determine NS (7) up to a multiplicative constant.

Generalize to other graph matrices (ex: Laplacian).
Generalize to equiangular subspaces.

Generalize to signed graphs and unitarily-signed graphs.
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