

EQUIANGULAR LINES AND REGULAR GRAPHS

By: Igor Balla

Definition: A set of lines passing through the origin is called equiangular, if every pair of lines make the same angle.

Definition: A set of lines passing through the origin is called equiangular, if every pair of lines make the same angle.

Question: Determine N(r), the maximum number of equiangular lines in \mathbb{R}^r .

Definition: A set of lines passing through the origin is called equiangular, if every pair of lines make the same angle.

Question: Determine N(r), the maximum number of equiangular lines in \mathbb{R}^r .

Earliest work:

Haantjes, Seidel 47-48 Blumenthal 49 Van Lint, Seidel 66

Lemmens, Seidel 73

...

Definition: A set of lines passing through the origin is called equiangular, if every pair of lines make the same angle.

Question: Determine N(r), the maximum number of equiangular lines in \mathbb{R}^r .

Connections:

- Elliptic geometry
- Frame theory
- Theory of polytopes
- Banach space theory
- Spectral graph theory
- Algebraic number theory
- Quantum information theory

Earliest work:

Haantjes, Seidel 47-48

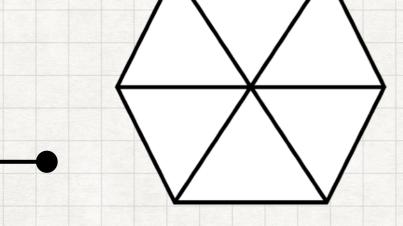
Blumenthal 49

Van Lint, Seidel 66

Lemmens, Seidel 73

...

Examples	

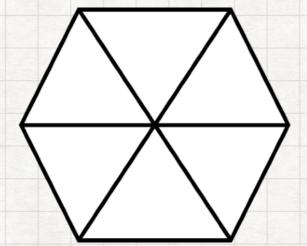

Examples			
r = 2:			

Examples Regular Hexagon r = 2: 3 lines

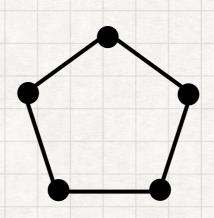
r = 2: Regular Hexagon

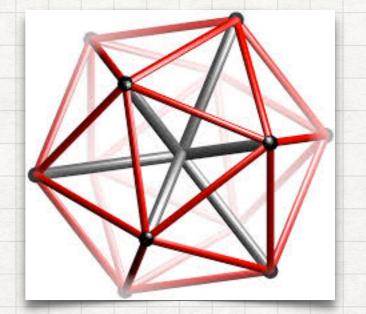
r = 3:

3 lines



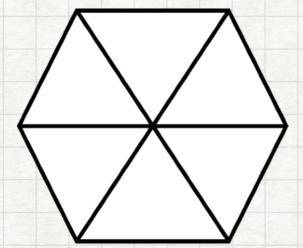
r = 2: Regular Hexagon


r = 3:

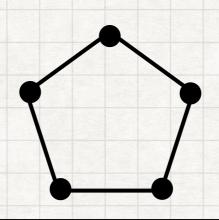

Regular Icosahedron

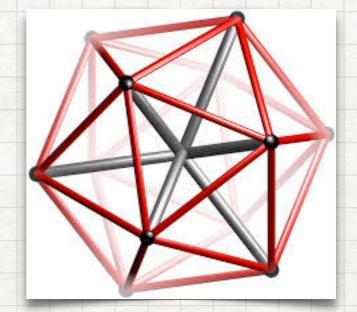
3 lines

6 lines



r = 2: Regular Hexagon

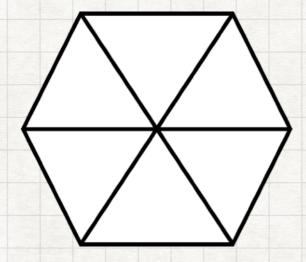

r = 3:


Regular Icosahedron

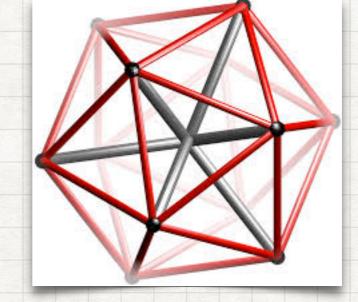
3 lines

6 lines

r = 7:


$$r = 2$$
: Re

Regular Hexagon

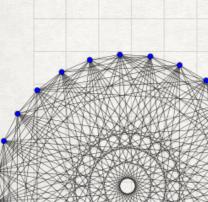

r = 3:

Regular Icosahedron

3 lines

6 lines

r = 7:

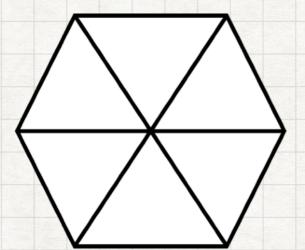

28 lines

Take all 28

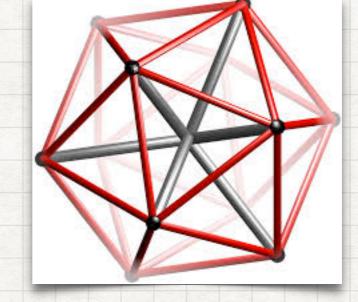
permutations of the

vector

$$(3,3,-1,-1,-1,-1,-1).$$


Schläfli Graph (E8 lattice)

r = 2: Regular Hexagon


r = 3:

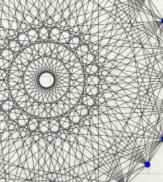
Regular Icosahedron

3 lines

6 lines

r = 7:

28 lines

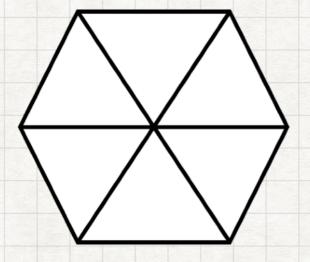

Take all 28

permutations of the

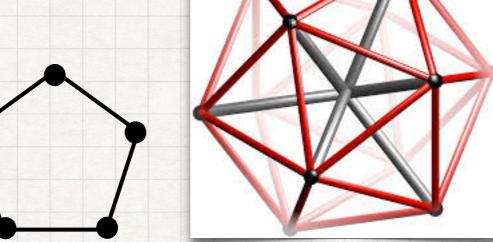
vector

$$(3,3,-1,-1,-1,-1,-1).$$

r = 23:


Schläfli Graph (E8 lattice)

r = 2: Regular Hexagon


r = 3:

Regular Icosahedron

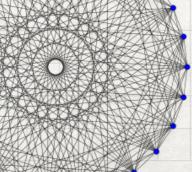
3 lines

6 lines

r = 7:

28 lines

Take all 28


permutations of the

vector

$$(3,3,-1,-1,-1,-1,-1).$$

r = 23:

276 lines

Schläfli Graph (E8 lattice) McLaughlin Graph (Leech lattice)

Proof: Let v_1, \ldots, v_n be unit vectors along the given lines.

Then $\langle v_i, v_j \rangle = \pm \alpha$ for some $0 \le \alpha < 1$.

Proof: Let v_1, \ldots, v_n be unit vectors along the given lines. Then $\langle v_i, v_j \rangle = \pm \alpha$ for some $0 \le \alpha < 1$.

Consider the matrices $v_1v_1^\intercal, \dots, v_nv_n^\intercal$. They live in the space of symmetric $r \times r$ matrices, which has dimension $\binom{r+1}{2}$.

Proof: Let v_1, \ldots, v_n be unit vectors along the given lines. Then $\langle v_i, v_j \rangle = \pm \alpha$ for some $0 \le \alpha < 1$.

Consider the matrices $v_1v_1^{\mathsf{T}}, \dots, v_nv_n^{\mathsf{T}}$. They live in the space of symmetric $r \times r$ matrices, which has dimension $\binom{r+1}{2}$.

Recalling the Frobenius inner product of matrices

$$\langle A, B \rangle_F = \operatorname{tr}(A^{\mathsf{T}}B) = \sum_{i,j} A_{i,j} B_{i,j}$$

Proof: Let v_1, \ldots, v_n be unit vectors along the given lines. Then $\langle v_i, v_j \rangle = \pm \alpha$ for some $0 \le \alpha < 1$.

Consider the matrices $v_1v_1^{\mathsf{T}},\ldots,v_nv_n^{\mathsf{T}}$. They live in the space of symmetric $r\times r$ matrices, which has dimension $\binom{r+1}{2}$.

Recalling the Frobenius inner product of matrices

$$\langle A, B \rangle_F = \operatorname{tr}(A^{\mathsf{T}}B) = \sum_{i,j} A_{i,j} B_{i,j}$$

we have $\left\langle v_i v_i^\intercal, v_j v_j^\intercal \right\rangle_F = \operatorname{tr}(v_i v_i^\intercal v_j v_j^\intercal) = (v_i^\intercal v_j)^2 = \begin{cases} 1 & i = j \\ \alpha^2 & i \neq j \end{cases}$.

Proof: Let v_1, \ldots, v_n be unit vectors along the given lines. Then $\langle v_i, v_j \rangle = \pm \alpha$ for some $0 \le \alpha < 1$.

Consider the matrices $v_1v_1^{\mathsf{T}},\ldots,v_nv_n^{\mathsf{T}}$. They live in the space of symmetric $r\times r$ matrices, which has dimension $\binom{r+1}{2}$.

Recalling the Frobenius inner product of matrices

$$\langle A, B \rangle_F = \operatorname{tr}(A^{\mathsf{T}}B) = \sum_{i,j} A_{i,j} B_{i,j}$$

we have $\left\langle v_i v_i^\intercal, v_j v_j^\intercal \right\rangle_F = \operatorname{tr}(v_i v_i^\intercal v_j v_j^\intercal) = (v_i^\intercal v_j)^2 = \begin{cases} 1 & i = j \\ \alpha^2 & i \neq j \end{cases}$.

Hence they are linearly independent.

Theorem[Absolute bound] (Gerzon 73): $N(r) \leq {r+1 \choose 2}$.

Theorem[Absolute bound] (Gerzon 73): $N(r) \leq {r+1 \choose 2}$.

- tight in dimension 2,3, 7 and 23. No other cases of equality are known.

Theorem[Absolute bound] (Gerzon 73): $N(r) \leq {r+1 \choose 2}$.

- tight in dimension 2,3, 7 and 23. No other cases of equality are known.

Theorem (de Caen 00): $N(r) \geq \Omega(r^2)$.

Theorem[Absolute bound] (Gerzon 73): $N(r) \leq {r+1 \choose 2}$.

- tight in dimension 2,3, 7 and 23. No other cases of equality are known.

Theorem (de Caen 00): $N(r) \geq \Omega(r^2)$.

Question (Lemmens, Seidel 73):

Determine $N_{\alpha}(r)$, the maximum number of equiangular lines in \mathbb{R}^r with common angle $\arccos(\alpha)$, especially when $\alpha = 1/3, 1/5, 1/7, \ldots$

Theorem[Absolute bound] (Gerzon 73): $N(r) \leq {r+1 \choose 2}$.

- tight in dimension 2,3, 7 and 23. No other cases of equality are known.

Theorem (de Caen 00): $N(r) \geq \Omega(r^2)$.

Question (Lemmens, Seidel 73):

Determine $N_{\alpha}(r)$, the maximum number of equiangular lines in \mathbb{R}^r with common angle $\arccos(\alpha)$, especially when $\alpha=1/3,1/5,1/7,\ldots$

Fact: $N_{\alpha}(r) \geq r$.

Theorem[Absolute bound] (Gerzon 73): $N(r) \leq {r+1 \choose 2}$.

- tight in dimension 2,3, 7 and 23. No other cases of equality are known.

Theorem (de Caen 00): $N(r) \geq \Omega(r^2)$.

Question (Lemmens, Seidel 73):

Determine $N_{\alpha}(r)$, the maximum number of equiangular lines in \mathbb{R}^r with common angle $\arccos(\alpha)$, especially when $\alpha=1/3,1/5,1/7,\ldots$

Fact: $N_{\alpha}(r) \geq r$.

Theorem (Neumann 73): If $N_{\alpha}(r)>2r$ then $\frac{1}{2}\left(\frac{1}{\alpha}-1\right)\in\mathbb{N}$.

Theorem[Absolute bound] (Gerzon 73): $N(r) \leq {r+1 \choose 2}$.

- tight in dimension 2,3, 7 and 23. No other cases of equality are known.

Theorem (de Caen 00): $N(r) \geq \Omega(r^2)$.

Question (Lemmens, Seidel 73):

Determine $N_{\alpha}(r)$, the maximum number of equiangular lines in \mathbb{R}^r with common angle $\arccos(\alpha)$, especially when $\alpha = 1/3, 1/5, 1/7, \ldots$

Fact: $N_{\alpha}(r) \geq r$.

Theorem (Neumann 73): If $N_{lpha}(r)>2r$ then $\frac{1}{2}\left(\frac{1}{lpha}-1
ight)\in\mathbb{N}$.

Theorem[Relative Bound] (Lemmens, Seidel 73): $N_{\alpha}(r) \leq r \frac{1-\alpha^2}{1-r\alpha^2}$ for all $r \leq 1/\alpha^2 - 2$.

Theorem (B., Dräxler, Keevash, Sudakov 17): $N_{\alpha}(r) \leq 2r - 2$ if r is exponentially large in $1/\alpha^2$, with equality if and only if $\alpha = 1/3$.

Theorem (B., Dräxler, Keevash, Sudakov 17): $N_{\alpha}(r) \leq 2r-2$ if r is exponentially large in $1/\alpha^2$, with equality if and only if $\alpha=1/3$.

Theorem (Jiang, Tidor, Yao, Zhang, Zhao 19): Let k_{α} be the minimum number of vertices in a graph with spectral radius $\frac{1}{2}\left(\frac{1}{\alpha}-1\right)$. If r is doubly exponentially large in k_{α}/α , then

$$N_{\alpha}(r) = \left\lfloor \frac{r-1}{1-1/k_{\alpha}} \right\rfloor.$$

Theorem (B., Dräxler, Keevash, Sudakov 17): $N_{\alpha}(r) \leq 2r-2$ if r is exponentially large in $1/\alpha^2$, with equality if and only if $\alpha=1/3$.

Theorem (Jiang, Tidor, Yao, Zhang, Zhao 19): Let k_{α} be the minimum number of vertices in a graph with spectral radius $\frac{1}{2}\left(\frac{1}{\alpha}-1\right)$. If r is doubly exponentially large in k_{α}/α , then

$$N_{\alpha}(r) = \left\lfloor \frac{r-1}{1-1/k_{\alpha}} \right\rfloor.$$

Question: What about for $1/\alpha^2 - 2 \le r \le O(2^{1/\alpha^2})$?

Theorem (B., Dräxler, Keevash, Sudakov 17): $N_{\alpha}(r) \leq 2r-2$ if r is exponentially large in $1/\alpha^2$, with equality if and only if $\alpha=1/3$.

Theorem (Jiang, Tidor, Yao, Zhang, Zhao 19): Let k_{α} be the minimum number of vertices in a graph with spectral radius $\frac{1}{2}\left(\frac{1}{\alpha}-1\right)$. If r is doubly exponentially large in k_{α}/α , then

$$N_{\alpha}(r) = \left\lfloor \frac{r-1}{1-1/k_{\alpha}} \right\rfloor.$$

Question: What about for $1/\alpha^2 - 2 \le r \le O(2^{1/\alpha^2})$?

Theorem (Yu 17): $N_{\alpha}(r) \leq {1/\alpha^2-1 \choose 2}$ for $1/\alpha^2 - 2 \leq r \leq 3/\alpha^2 - 16$.

Theorem (B., Dräxler, Keevash, Sudakov 17): $N_{\alpha}(r) \leq 2r-2$ if r is exponentially large in $1/\alpha^2$, with equality if and only if $\alpha=1/3$.

Theorem (Jiang, Tidor, Yao, Zhang, Zhao 19): Let k_{α} be the minimum number of vertices in a graph with spectral radius $\frac{1}{2}\left(\frac{1}{\alpha}-1\right)$. If r is doubly exponentially large in k_{α}/α , then

$$N_{\alpha}(r) = \left\lfloor \frac{r-1}{1-1/k_{\alpha}} \right\rfloor.$$

Question: What about for $1/\alpha^2 - 2 \le r \le O(2^{1/\alpha^2})$?

Theorem (Yu 17): $N_{\alpha}(r) \leq {1/\alpha^2-1 \choose 2}$ for $1/\alpha^2-2 \leq r \leq 3/\alpha^2-16$.

Theorem (Glazyrin, Yu 18): $N_{\alpha}(r) \leq O(r/\alpha^2)$ for all $\alpha \leq \frac{1}{3}$.

New results

New results

Theorem(B.): Assuming $\alpha \to 0$, we have

$$N_{\alpha}(r) \le \max\left(\binom{1/\alpha^2 - 1}{2}, (2 + o(1))r\right)$$

New results

Theorem(B.): Assuming $\alpha \to 0$, we have

$$N_{\alpha}(r) \leq \max\left(\binom{1/\alpha^2-1}{2}, (2+o(1))r\right)$$
.

$$N_{\alpha}(r) = \Theta(r)$$
 for all $r > \frac{1-o(1)}{4\alpha^4}$.

Theorem(B.): Assuming $\alpha \to 0$, we have

$$N_{\alpha}(r) \le \max\left(\binom{1/\alpha^2 - 1}{2}, (2 + o(1))r\right)$$
.

$$N_{lpha}(r) = \Theta\left(r
ight)$$
 for all $r > rac{1-o(1)}{4lpha^4}$.

In particular, $N_{\alpha}(r)=\binom{1/\alpha^2-1}{2}$ holds for all $\frac{1}{\alpha^2}-2\leq r\leq \frac{1-o(1)}{4\alpha^4}$ if and only if the absolute bound is met in dimension $\frac{1}{\alpha^2}-2$.

Theorem(B.): Assuming $\alpha \to 0$, we have

$$N_{\alpha}(r) \leq \max\left(\binom{1/\alpha^2-1}{2}, (2+o(1))r\right)$$
.

$$N_{lpha}(r)=\Theta\left(r
ight)$$
 for all $\ r>rac{1-o(1)}{4lpha^4}$.

In particular, $N_{\alpha}(r) = \binom{1/\alpha^2 - 1}{2}$ holds for all $\frac{1}{\alpha^2} - 2 \le r \le \frac{1 - o(1)}{4\alpha^4}$ if and only if the absolute bound is met in dimension $\frac{1}{\alpha^2} - 2$.

Also, for infinitely many α , $N_{\alpha}(r) = \Theta\left(1/\alpha^4\right)$ holds for all $\frac{1}{\alpha^2} - 2 \le r \le \frac{1-o(1)}{4\alpha^4}$.

Theorem(B.): Assuming $\alpha \to 0$, we have

$$N_{\alpha}(r) \leq \max\left(\binom{1/\alpha^2-1}{2}, (2+o(1))r\right)$$
.

$$N_{lpha}(r) = \Theta\left(r
ight)$$
 for all $r > rac{1-o(1)}{4lpha^4}$.

In particular, $N_{\alpha}(r) = \binom{1/\alpha^2 - 1}{2}$ holds for all $\frac{1}{\alpha^2} - 2 \le r \le \frac{1 - o(1)}{4\alpha^4}$ if and only if the absolute bound is met in dimension $\frac{1}{\alpha^2} - 2$.

Also, for infinitely many α , $N_{\alpha}(r)=\Theta\left(1/\alpha^4\right)$ holds for all $\frac{1}{\alpha^2}-2\leq r\leq \frac{1-o(1)}{4\alpha^4}$.

Conjecture(B.):
$$N_{\alpha}(r) \leq \max\left(\binom{1/\alpha^2-1}{2}, \left\lfloor \frac{r-1}{1-1/k_{\alpha}} \right\rfloor\right)$$
.

Theorem(B.): Assuming $\alpha \to 0$, we have

$$N_{\alpha}(r) \leq \max\left(\binom{1/\alpha^2-1}{2}, (2+o(1))r\right)$$
.

$$N_{lpha}(r) = \Theta\left(r
ight)$$
 for all $r > rac{1-o(1)}{4lpha^4}$.

In particular, $N_{\alpha}(r) = \binom{1/\alpha^2 - 1}{2}$ holds for all $\frac{1}{\alpha^2} - 2 \le r \le \frac{1 - o(1)}{4\alpha^4}$ if and only if the absolute bound is met in dimension $\frac{1}{\alpha^2} - 2$.

Also, for infinitely many α , $N_{\alpha}(r) = \Theta\left(1/\alpha^4\right)$ holds for all $\frac{1}{\alpha^2} - 2 \le r \le \frac{1-o(1)}{4\alpha^4}$.

always equality when this term is bigger!

Conjecture(B.):
$$N_{\alpha}(r) \leq \max\left(\binom{1/\alpha^2-1}{2}, \left\lfloor \frac{r-1}{1-1/k_{\alpha}} \right\rfloor\right)$$
.

New results for regular graphs

New results for regular graphs

Corollary(B.): Let G be a k-regular graph with second and last eigenvalue λ_2, λ_n . If the spectral gap satisfies $k - \lambda_2 \ll n$, then

$$\lambda_2 \geq (1 - o(1))k^{1/3} \quad \text{and} \quad \lambda_2 \geq (1 - o(1))\sqrt{-\lambda_n}.$$

New results for regular graphs

Corollary(B.): Let G be a k-regular graph with second and last eigenvalue λ_2, λ_n . If the spectral gap satisfies $k - \lambda_2 \ll n$, then

$$\lambda_2 \ge (1 - o(1))k^{1/3}$$
 and $\lambda_2 \ge (1 - o(1))\sqrt{-\lambda_n}$.

Theorem(B.): If G is a k-regular graph with $k-\lambda_2<\frac{n}{2}$, then

$$2\left(k - \frac{(k - \lambda_2)^2}{n}\right) \le \frac{\lambda_2(\lambda_2 + 1)(2\lambda_2 + 1)}{1 - \frac{2(k - \lambda_2)}{n}} - \lambda_2(3\lambda_2 + 1),$$
$$-\lambda_n \le \frac{\lambda_2(\lambda_2 + 1)}{1 - \frac{2(k - \lambda_2)}{n}} - \lambda_2,$$

with equality in both whenever $n+1=\binom{n-\operatorname{mult}(\lambda_2)+1}{2}$, i.e. when G corresponds to a set of real equiangular lines meeting the absolute bound in dimension $r=n-\operatorname{mult}(\lambda_2)$.

Proof sketch: Starting with the adjacency matrix A, let $\alpha=\frac{1}{2\lambda_2+1}$ and define $M=(1-\alpha)I+\alpha J-2\alpha A$.

Proof sketch: Starting with the adjacency matrix A, let $\alpha=\frac{1}{2\lambda_2+1}$ and define $M=(1-\alpha)I+\alpha J-2\alpha A$.

Straightforward to check that M is positive semidefinite, so it is the Gram matrix of some unit vectors v_1, \ldots, v_n .

Proof sketch: Starting with the adjacency matrix A, let $\alpha=\frac{1}{2\lambda_2+1}$ and define $M=(1-\alpha)I+\alpha J-2\alpha A$.

Straightforward to check that M is positive semidefinite, so it is the Gram matrix of some unit vectors v_1, \ldots, v_n .

Orthogonally project $\left(\sum_{j=1}^n v_j\right) v_1^\mathsf{T} + v_1 \left(\sum_{j=1}^n v_j\right)^\mathsf{T}$ onto the span of $v_1 v_1^\mathsf{T}, \dots, v_n v_n^\mathsf{T}$ (with respect to the Frobenius inner product).

Proof sketch: Starting with the adjacency matrix A, let $\alpha=\frac{1}{2\lambda_2+1}$ and define $M=(1-\alpha)I+\alpha J-2\alpha A$.

Straightforward to check that M is positive semidefinite, so it is the Gram matrix of some unit vectors v_1, \ldots, v_n .

Orthogonally project $\left(\sum_{j=1}^n v_j\right) v_1^\intercal + v_1 \left(\sum_{j=1}^n v_j\right)^\intercal$ onto the span of $v_1 v_1^\intercal, \ldots, v_n v_n^\intercal$ (with respect to the Frobenius inner product).

The (Frobenius) norm of X can only decrease!

Theorem(B.): Assuming $\alpha \to 0$, we have

$$N_{\alpha}(r) \leq \max\left(\binom{1/\alpha^2-1}{2}, (2+o(1))r\right)$$

Theorem(B.): Assuming $\alpha \to 0$, we have

$$N_{\alpha}(r) \leq \max\left(\binom{1/\alpha^2-1}{2}, (2+o(1))r\right)$$
.

Proof sketch: Start with the Gram matrix M of the unit vectors v_1, \ldots, v_n spanning n lines. Consider its largest eigenvalue λ_1 .

Theorem(B.): Assuming $\alpha \to 0$, we have

$$N_{\alpha}(r) \le \max\left(\binom{1/\alpha^2-1}{2}, (2+o(1))r\right)$$

Proof sketch: Start with the Gram matrix M of the unit vectors v_1, \ldots, v_n spanning n lines. Consider its largest eigenvalue λ_1 .

If $\lambda_1 \leq \frac{1}{2} \left(\frac{1}{\alpha^2} - 1 \right)$, then the first bound $n \leq \binom{1/\alpha^2 - 1}{2}$ follows immediately from $n(1 + \alpha^2(n-1)) = \operatorname{tr}(M^2) \leq \lambda_1 \operatorname{tr}(M) = \lambda_1 n$.

Theorem(B.): Assuming $\alpha \to 0$, we have

$$N_{\alpha}(r) \leq \max\left(\binom{1/\alpha^2-1}{2}, (2+o(1))r\right)$$

Proof sketch: Start with the Gram matrix M of the unit vectors v_1, \ldots, v_n spanning n lines. Consider its largest eigenvalue λ_1 .

If $\lambda_1 \leq \frac{1}{2} \left(\frac{1}{\alpha^2} - 1 \right)$, then the first bound $n \leq \binom{1/\alpha^2 - 1}{2}$ follows immediately from $n(1 + \alpha^2(n-1)) = \operatorname{tr}(M^2) \leq \lambda_1 \operatorname{tr}(M) = \lambda_1 n$.

Otherwise, we can assume that $\lambda_1 > \frac{1}{2} \left(\frac{1}{\alpha^2} - 1 \right)$ and $n \geq \binom{1/\alpha^2 - 1}{2}$.

Theorem(B.): Assuming $\alpha \to 0$, we have

$$N_{\alpha}(r) \leq \max\left(\binom{1/\alpha^2-1}{2}, (2+o(1))r\right)$$

Proof sketch: Start with the Gram matrix M of the unit vectors v_1, \ldots, v_n spanning n lines. Consider its largest eigenvalue λ_1 .

If $\lambda_1 \leq \frac{1}{2} \left(\frac{1}{\alpha^2} - 1 \right)$, then the first bound $n \leq \binom{1/\alpha^2 - 1}{2}$ follows immediately from $n(1 + \alpha^2(n-1)) = \operatorname{tr}(M^2) \leq \lambda_1 \operatorname{tr}(M) = \lambda_1 n$.

Otherwise, we can assume that $\lambda_1 > \frac{1}{2} \left(\frac{1}{\alpha^2} - 1 \right)$ and $n \geq \binom{1/\alpha^2 - 1}{2}$.

"Switching argument": negate some of the vectors so that the eigenvector x corresponding to λ_1 has all nonnegative entries.

Theorem(B.): Assuming $\alpha \to 0$, we have

$$N_{\alpha}(r) \leq \max\left(\binom{1/\alpha^2-1}{2}, (2+o(1))r\right)$$

Proof sketch: Start with the Gram matrix M of the unit vectors v_1, \ldots, v_n spanning n lines. Consider its largest eigenvalue λ_1 .

If $\lambda_1 \leq \frac{1}{2} \left(\frac{1}{\alpha^2} - 1 \right)$, then the first bound $n \leq \binom{1/\alpha^2 - 1}{2}$ follows immediately from $n(1 + \alpha^2(n-1)) = \operatorname{tr}(M^2) \leq \lambda_1 \operatorname{tr}(M) = \lambda_1 n$.

Otherwise, we can assume that $\lambda_1 > \frac{1}{2} \left(\frac{1}{\alpha^2} - 1 \right)$ and $n \geq \binom{1/\alpha^2 - 1}{2}$.

"Switching argument": negate some of the vectors so that the eigenvector x corresponding to λ_1 has all nonnegative entries.

Consider the graph with vertices v_1, \ldots, v_n such that $v_i v_j$ forms an edge if and only if $\langle v_i, v_j \rangle = -\alpha$.

Theorem(B.): Assuming $\alpha \to 0$, we have

$$N_{\alpha}(r) \leq \max\left(\binom{1/\alpha^2-1}{2}, (2+o(1))r\right)$$

Theorem(B.): Assuming $\alpha \to 0$, we have

$$N_{\alpha}(r) \leq \max\left(\binom{1/\alpha^2-1}{2}, (2+o(1))r\right)$$

Fix i and project $\left(\sum_{j=1}^{n} x(j)v_j\right)v_i^{\mathsf{T}} + v_i\left(\sum_{j=1}^{n} x(j)v_j\right)^{\mathsf{T}}$ onto the span of v_1, \ldots, v_n (with respect to the Frobenius inner product).

Theorem(B.): Assuming $\alpha \to 0$, we have

$$N_{\alpha}(r) \leq \max\left(\binom{1/\alpha^2-1}{2}, (2+o(1))r\right)$$
.

Fix i and project $\left(\sum_{j=1}^{n} x(j)v_j\right)v_i^{\mathsf{T}} + v_i\left(\sum_{j=1}^{n} x(j)v_j\right)^{\mathsf{T}}$ onto the span of v_1, \ldots, v_n (with respect to the Frobenius inner product).

Since the (Frobenius) norm can only decrease, a calculation gives yields that the degree of v_i satisfies $d(v_i) \leq O(1/\alpha^3)$.

Theorem(B.): Assuming $\alpha \to 0$, we have

$$N_{\alpha}(r) \leq \max\left(\binom{1/\alpha^2-1}{2}, (2+o(1))r\right)$$

Fix i and project $\left(\sum_{j=1}^{n} x(j)v_j\right)v_i^{\mathsf{T}} + v_i\left(\sum_{j=1}^{n} x(j)v_j\right)^{\mathsf{T}}$ onto the span of v_1, \ldots, v_n (with respect to the Frobenius inner product).

Since the (Frobenius) norm can only decrease, a calculation gives yields that the degree of v_i satisfies $d(v_i) \leq O(1/\alpha^3)$.

Using a variant of the usual Alon-Boppana theorem, we can bootstrap this bound to $d(v_i)<\frac{1}{4\alpha^2}$.

Theorem(B.): Assuming $\alpha \to 0$, we have

$$N_{\alpha}(r) \le \max\left(\binom{1/\alpha^2 - 1}{2}, (2 + o(1))r\right)$$
.

Fix i and project $\left(\sum_{j=1}^{n} x(j)v_j\right)v_i^{\mathsf{T}} + v_i\left(\sum_{j=1}^{n} x(j)v_j\right)^{\mathsf{T}}$ onto the span of v_1, \ldots, v_n (with respect to the Frobenius inner product).

Since the (Frobenius) norm can only decrease, a calculation gives yields that the degree of v_i satisfies $d(v_i) \leq O(1/\alpha^3)$.

Using a variant of the usual Alon-Boppana theorem, we can bootstrap this bound to $d(v_i) < \frac{1}{4\alpha^2}$.

The second bound $n \leq (2+o(1))r$ then follows by applying the inequality ${\rm tr}(H)^2 \leq {\rm rk}(H){\rm tr}(H^2)$ with $H=M-\alpha J$.

Given a pair of complex lines $U, V \subset \mathbb{C}^r$, the quantity $|\langle u, v \rangle|$ is the same for all unit vectors $u \in U, v \in V$ and so $\arccos |\langle u, v \rangle|$ is called the Hermitian angle between U and V.

Given a pair of complex lines $U, V \subset \mathbb{C}^r$, the quantity $|\langle u, v \rangle|$ is the same for all unit vectors $u \in U, v \in V$ and so $\arccos |\langle u, v \rangle|$ is called the Hermitian angle between U and V.

We define $N_{\alpha}^{\mathbb{C}}(r)$ to be the maximum number of complex equiangular lines in \mathbb{C}^r with common Hermitian angle $\arccos(\alpha)$.

Given a pair of complex lines $U, V \subset \mathbb{C}^r$, the quantity $|\langle u, v \rangle|$ is the same for all unit vectors $u \in U, v \in V$ and so $\arccos |\langle u, v \rangle|$ is called the **Hermitian angle** between U and V.

We define $N_{\alpha}^{\mathbb{C}}(r)$ to be the maximum number of complex equiangular lines in \mathbb{C}^r with common Hermitian angle $\arccos(\alpha)$.

Theorem[Absolute bound] (Delsarte, Goethals, Seidel 75): $N_{\alpha}^{\mathbb{C}}(r) \leq r^2$.

Given a pair of complex lines $U, V \subset \mathbb{C}^r$, the quantity $|\langle u, v \rangle|$ is the same for all unit vectors $u \in U, v \in V$ and so $\arccos |\langle u, v \rangle|$ is called the **Hermitian angle** between U and V.

We define $N_{\alpha}^{\mathbb{C}}(r)$ to be the maximum number of complex equiangular lines in \mathbb{C}^r with common Hermitian angle $\arccos(\alpha)$.

Theorem[Absolute bound] (Delsarte, Goethals, Seidel 75): $N_{lpha}^{\mathbb{C}}(r) \leq r^2$.

Conjecture (Zauner 99): For each $r \in \mathbb{N}$, $\max_{\alpha} N_{\alpha}^{\mathbb{C}}(r) = r^2$ and a construction can be obtained as the orbit of a vector under the action of a Weyl-Heisenberg group.

Given a pair of complex lines $U, V \subset \mathbb{C}^r$, the quantity $|\langle u, v \rangle|$ is the same for all unit vectors $u \in U, v \in V$ and so $\arccos |\langle u, v \rangle|$ is called the **Hermitian angle** between U and V.

We define $N_{\alpha}^{\mathbb{C}}(r)$ to be the maximum number of complex equiangular lines in \mathbb{C}^r with common Hermitian angle $\arccos(\alpha)$.

Theorem[Absolute bound] (Delsarte, Goethals, Seidel 75): $N_{lpha}^{\mathbb{C}}(r) \leq r^2$.

Conjecture (Zauner 99): For each $r \in \mathbb{N}$, $\max_{\alpha} N_{\alpha}^{\mathbb{C}}(r) = r^2$ and a construction can be obtained as the orbit of a vector under the action of a Weyl-Heisenberg group.

Collections of r^2 complex equiangular lines in \mathbb{C}^r are known as SICs/SIC-POVMs in quantum information theory.

Theorem[Relative Bound] (Delsarte, Goethals, Seidel 75):

$$N_{\alpha}^{\mathbb{C}}(r) \leq r \frac{1-\alpha^2}{1-r\alpha^2}$$
 for all $r \leq 1/\alpha^2 - 1$.

Theorem[Relative Bound] (Delsarte, Goethals, Seidel 75):

$$N_{\alpha}^{\mathbb{C}}(r) \leq r \frac{1-\alpha^2}{1-r\alpha^2}$$
 for all $r \leq 1/\alpha^2 - 1$.

Theorem(B.): If $r \leq \frac{1-o(1)}{\alpha^3}$, then $N_{\alpha}^{\mathbb{C}}(r) \leq \left(\frac{1}{\alpha^2} - 1\right)^2$, with equality if and only if there exists a SIC in $1/\alpha^2 - 1$ dimensions.

Otherwise
$$N_{\alpha}^{\mathbb{C}}(r) \leq \frac{1+\alpha}{\alpha}r + O\left(\frac{1}{\alpha^3}\right)$$
.

Future directions for research

- Unit vectors corresponding to equiangular lines are equivalently spherical $\{\alpha, -\alpha\}$ -codes. Extend methods to more general spherical L-codes.
- Determine $N_{\alpha}^{\mathbb{C}}(r)$ up to a multiplicative constant.
- Generalize to other graph matrices (ex: Laplacian).
- Generalize to equiangular subspaces.
- Generalize to signed graphs and unitarily-signed graphs.

