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Definition: A set of lines passing through the origin is called
equiangular, if every pair of lines make the same angle.

Not an example!

Question: What is the maximum number of equiangular lines
in R%?
Earliest work:
Haantjes, Seidel 47-48
For d =2, 3 Greeks? Blumenthal 49

Van Lint, Seidel 66
Lemmens, Seidel 73
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Examples

Triangle In general, d-simplex
gives d+1 lines:

d=3: lcosahedron d=7: Take all 28
permutations of the

6 lines e 28 lines

vector
(3,3,-1,-1,-1,-1,-1,-1).
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Question (Lemmens, Seidel 73):
What if the angle is fixed and d tends to infinity?

Theorem (Bukh '15): For fixed « and sufficiently large d, there
are at most 20(@™°)d equiangular lines.

Theorem (B., Draxler, Keevash, Sudakov): For fixed a and
sufficiently large d, the maximum number of equiangular lines

" d
in R%is —2d—2 if ais1/3
< 1.93d otherwise.
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ldeas behind the upper bound

Definition: Call the edge {z;,z;}red if z; - ; = +a and call
it blue if z; - £; = —a. So we get a red-blue edge colored
complete graph G on n vertices.

Lemmai-Fari 5 >0, if- 2, % R? are unit vectors with

T;-x; < —0,thenn<1/8+1.

Proof: 0 <[>, z||? <n—n(n—1)5
So our graph has no blue clique of size larger than 1/« + 1.

Thus by Ramsey’s theorem it has a large red clique Y'!
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Most of the remaining
vertices X connectto Y
entirely via red edges.

Now project the vectors of X

onto the orthogonal
complement of the span of
the vectors of Y.

D r m —2c
ot products become SR (L e) e
1l — «
Now consider the Gram matrix M of these new vectors.
Most of the dot products are €, so M is “close” to the identity.

Lemma (Schnirelmann 30 / Bellman 60 / Alon ‘09... ):
For any symmetric matrix M with rank d, tr(M)? < dtr(M?).
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Equiangular subspaces

Question: How do we define the angle between subspaces

Uand V?

Naive idea: Take the minimum angle between any pair of

vectors u € U,v € V, V\

Doesn’t appeal to elementary geometric \

intuition!

We represent a k-dimensional subspace of R™ by an n X k

matrix U whose columns form an orthonormal basis for the
subspace.

Full answer: There are k principal angles 0 < 07 < ...60 < 7/2
between U and V, defined by 6; = arccos v/ \; where

1> X > ...2 A = 0 are the eigenvalues of vivutyv.
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Definition: We call a set of subspaces H equiangular with
angle @, if 8 is a principal angle betweenany U,V € H.

Theorem (B., Sudakov):
For any 6 > 0, there are no more than ((d_gl) + kb — 1>
k

k-dimensional subspaces in R" that are equiangular with angle 6.
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For any 6 > 0, there are no more than k
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Proof: Let Uy, ..., U, be the matrices for the given subspaces.

Then det(U]U;UTU; — M) = 0 for A = (cos 0)?

Let S = {S € R®*" : 8T = 5} be the set of real symmetric
matrices.

A
Define f; : S™ — R by f;(5) = det (UZ-TSU}; =z tr(S)) ;

Note that they are all homogeneous polynomials of degree k
in the variables S, :1 <a <b<d.

0 i # J
(LA i~

Now observe that
fi(UjUJT) — det(UiTUjUjTUi S )\[) — {

and hence f1,..., [n are linearly independent.
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