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Definition: A set of lines passing through the origin is called 
equiangular, if every pair of lines make the same angle.

Question: What is the maximum number of equiangular lines 
in      ? Rd

Earliest work: 
Haantjes, Seidel 47-48 
Blumenthal 49  
Van Lint, Seidel 66 
Lemmens, Seidel 73 
… 

For d = 2, 3 Greeks?

Not an example!
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d = 2:

3 lines
In general, d-simplex  
gives d+1 lines:

d = 3:

6 lines

Triangle

Icosahedron d = 7:

28 lines
Take all 28 

permutations of the 
vector 

(3,3,-1,-1,-1,-1,-1,-1). 
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Question (Lemmens, Seidel 73): 
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        if     is  
        otherwise.  

Theorem (B., Dräxler, Keevash, Sudakov): For fixed     and 
sufficiently large    , the maximum number of equiangular lines 
in       is       

↵

Rd
d

= 2d� 2
 1.93d

1/3↵{

Theorem (Gerzon 73): The number of equiangular lines in       is 
at most           .

Rd
�d+1

2

�

↵ = ⇥

✓
1p
d

◆
! 0.



Ideas behind the upper bound      



Ideas behind the upper bound      

Definition: Call the edge               red if                        and call 
it blue if                       . So we get a red-blue edge colored 
complete graph      on     vertices.

{xi, xj} xi · xj = +↵

xi · xj = �↵

nG



Ideas behind the upper bound      

Lemma: For            , if                              are unit vectors with 
                      , then                       .

x1, . . . , xn 2 Rd

xi · xj  �� n  1/� + 1
� > 0

Definition: Call the edge               red if                        and call 
it blue if                       . So we get a red-blue edge colored 
complete graph      on     vertices.

{xi, xj} xi · xj = +↵

xi · xj = �↵

nG



Ideas behind the upper bound      

Lemma: For            , if                              are unit vectors with 
                      , then                       .

x1, . . . , xn 2 Rd

xi · xj  �� n  1/� + 1
� > 0

Proof: ⇤

Definition: Call the edge               red if                        and call 
it blue if                       . So we get a red-blue edge colored 
complete graph      on     vertices.

{xi, xj} xi · xj = +↵

xi · xj = �↵

nG

0  k
Pn

i=1 xik2  n� n(n� 1)�.



Ideas behind the upper bound      

Lemma: For            , if                              are unit vectors with 
                      , then                       .

x1, . . . , xn 2 Rd

xi · xj  �� n  1/� + 1
� > 0

Proof: ⇤

Definition: Call the edge               red if                        and call 
it blue if                       . So we get a red-blue edge colored 
complete graph      on     vertices.

{xi, xj} xi · xj = +↵

xi · xj = �↵

n

So our graph has no blue clique of size larger than              .1/↵+ 1

G

0  k
Pn

i=1 xik2  n� n(n� 1)�.



Thus by Ramsey’s theorem it has a large red clique     !

Ideas behind the upper bound      

Lemma: For            , if                              are unit vectors with 
                      , then                       .

x1, . . . , xn 2 Rd

xi · xj  �� n  1/� + 1
� > 0

Proof: ⇤

Definition: Call the edge               red if                        and call 
it blue if                       . So we get a red-blue edge colored 
complete graph      on     vertices.

{xi, xj} xi · xj = +↵

xi · xj = �↵

n

So our graph has no blue clique of size larger than              .1/↵+ 1

Y

G

0  k
Pn

i=1 xik2  n� n(n� 1)�.



Y



Most of the remaining 
vertices     connect to     
entirely via red edges.

Y

Y

Garbage

X

X



Most of the remaining 
vertices     connect to     
entirely via red edges.

Y

Y

Garbage

Now project the vectors of      
onto the orthogonal 
complement of the span of 
the  vectors of    . 

X

X

X

Y



Most of the remaining 
vertices     connect to     
entirely via red edges.

Y

Y

Garbage

Now project the vectors of      
onto the orthogonal 
complement of the span of 
the  vectors of    . 

X

X

X

Y

Dot products become
↵ ! ✏

�↵ ! �2↵

1� ↵
(1� ✏) + ✏



Most of the remaining 
vertices     connect to     
entirely via red edges.

Y

Y

Garbage

Now project the vectors of      
onto the orthogonal 
complement of the span of 
the  vectors of    . 

X

X

X

Y

Dot products become
↵ ! ✏

�↵ ! �2↵

1� ↵
(1� ✏) + ✏

Now consider the Gram matrix      of these new vectors.M



Most of the remaining 
vertices     connect to     
entirely via red edges.

Y

Y

Garbage

Now project the vectors of      
onto the orthogonal 
complement of the span of 
the  vectors of    . 

X

X

X

Y

Dot products become
↵ ! ✏

�↵ ! �2↵

1� ↵
(1� ✏) + ✏

Now consider the Gram matrix      of these new vectors.
Most of the dot products are    , so      is “close” to the identity.

M
M✏



Most of the remaining 
vertices     connect to     
entirely via red edges.

Y

Y

Garbage

Now project the vectors of      
onto the orthogonal 
complement of the span of 
the  vectors of    . 

X

X

X

Y

Dot products become
↵ ! ✏

�↵ ! �2↵

1� ↵
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Now consider the Gram matrix      of these new vectors.
Most of the dot products are    , so      is “close” to the identity.

M
M✏

Lemma (Schnirelmann 30 / Bellman 60 / Alon ’09… ):  
For any symmetric matrix      with rank   ,                                         M d tr(M)2  d tr(M2).
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Equiangular subspaces

We represent a   -dimensional subspace of        by an            
matrix     whose columns form an orthonormal basis for the 
subspace.

k Rn n⇥ k

Question: How do we define the angle between subspaces  
    and    ?

U

U V

Naive idea: Take the minimum angle between any pair of 
vectors                       .u 2 U, v 2 V

Full answer: There are     principal angles 
between     and    , defined by                               where  
                                        are the eigenvalues of                   . 

k 0  ✓1  . . . ✓k  ⇡/2
U V ✓i = arccos

p
�i

1 � �1 � . . . � �k � 0 V TUUTV

Doesn’t appeal to elementary geometric 
intuition!
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