

EQUIANGULAR LINES AND SUBSPACES IN EUCLIDEAN SPACES

By: Igor Balla

Joint work with: Felix Dräxler, Peter Keevash, Benny Sudakov

Definition: A set of lines passing through the origin is called equiangular, if every pair of lines make the same angle.

Definition: A set of lines passing through the origin is called equiangular, if every pair of lines make the same angle.

Not an example!

Definition: A set of lines passing through the origin is called equiangular, if every pair of lines make the same angle.

Not an example!

Question: What is the maximum number of equiangular lines in \mathbb{R}^{d} ?

Definition: A set of lines passing through the origin is called equiangular, if every pair of lines make the same angle.

Not an example!

Question: What is the maximum number of equiangular lines in \mathbb{R}^{d} ?

For $d=2,3$ Greeks?

Definition: A set of lines passing through the origin is called equiangular, if every pair of lines make the same angle.

Not an example!

Question: What is the maximum number of equiangular lines in \mathbb{R}^{d} ?

Earliest work:
Haantjes, Seidel 47-48
For $d=2,3$ Greeks?
Blumenthal 49
Van Lint, Seidel 66
Lemmens, Seidel 73

Examples

Examples
$d=2:$

Examples

Examples

In general, d-simplex gives $\mathrm{d}+1$ lines:

Examples

Examples

Examples

Examples

Theorem (Gerzon 73): The number of equiangular lines in \mathbb{R}^{d} is at most $\binom{d+1}{2}$.

Theorem (Gerzon 73): The number of equiangular lines in \mathbb{R}^{d} is at most $\binom{d+1}{2}$.
Theorem (de Caen '00 / Jedwab, Wiebe '15 / Greaves, et al. '15): There exist $\Omega\left(d^{2}\right)$ equiangular lines in \mathbb{R}^{d}.

Theorem (Gerzon 73): The number of equiangular lines in \mathbb{R}^{d} is at most $\binom{d+1}{2}$.
Theorem (de Caen '00 / Jedwab, Wiebe '15 / Greaves, et al. '15): There exist $\Omega\left(d^{2}\right)$ equiangular lines in \mathbb{R}^{d}.
Remark: These constructions all have an $\alpha=\Theta\left(\frac{1}{\sqrt{d}}\right) \rightarrow 0$.

Theorem (Gerzon 73): The number of equiangular lines in \mathbb{R}^{d} is at most $\binom{d+1}{2}$.
Theorem (de Caen '00 / Jedwab, Wiebe '15 / Greaves, et al. '15): There exist $\Omega\left(d^{2}\right)$ equiangular lines in \mathbb{R}^{d}.
Remark: These constructions all have an $\alpha=\Theta\left(\frac{1}{\sqrt{d}}\right) \rightarrow 0$.
Question (Lemmens, Seidel 73):
What if the angle is fixed and d tends to infinity?

Theorem (Gerzon 73): The number of equiangular lines in \mathbb{R}^{d} is at most $\binom{d+1}{2}$.
Theorem (de Caen '00 / Jedwab, Wiebe '15 / Greaves, et al. '15): There exist $\Omega\left(d^{2}\right)$ equiangular lines in \mathbb{R}^{d}.
Remark: These constructions all have an $\alpha=\Theta\left(\frac{1}{\sqrt{d}}\right) \rightarrow 0$.
Question (Lemmens, Seidel 73):
What if the angle is fixed and d tends to infinity?
Theorem (Bukh '15): For fixed α and sufficiently large d, there are at most $2^{O\left(\alpha^{-2}\right)} d$ equiangular lines.

Theorem (Gerzon 73): The number of equiangular lines in \mathbb{R}^{d} is at most $\binom{d+1}{2}$.
Theorem (de Caen '00 / Jedwab, Wiebe '15 / Greaves, et al. '15): There exist $\Omega\left(d^{2}\right)$ equiangular lines in \mathbb{R}^{d}.
Remark: These constructions all have an $\alpha=\Theta\left(\frac{1}{\sqrt{d}}\right) \rightarrow 0$.
Question (Lemmens, Seidel 73):
What if the angle is fixed and d tends to infinity?
Theorem (Bukh '15): For fixed α and sufficiently large d, there are at most $2^{O\left(\alpha^{-2}\right)} d$ equiangular lines.

Theorem (B., Dräxler, Keevash, Sudakov): For fixed α and sufficiently large d, the maximum number of equiangular lines in \mathbb{R}^{d} is

$$
\left\{\begin{array}{l}
=2 d-2 \text { if } \alpha \text { is } 1 / 3 \\
\leq 1.93 d \text { otherwise. }
\end{array}\right.
$$

Ideas behind the upper bound

Ideas behind the upper bound

Definition: Call the edge $\left\{x_{i}, x_{j}\right\}$ red if $x_{i} \cdot x_{j}=+\alpha$ and call it blue if $x_{i} \cdot x_{j}=-\alpha$. So we get a red-blue edge colored complete graph G on n vertices.

Ideas behind the upper bound

Definition: Call the edge $\left\{x_{i}, x_{j}\right\}$ red if $x_{i} \cdot x_{j}=+\alpha$ and call it blue if $x_{i} \cdot x_{j}=-\alpha$. So we get a red-blue edge colored complete graph G on n vertices.

Lemma: For $\beta>0$, if $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ are unit vectors with $x_{i} \cdot x_{j} \leq-\beta$, then $n \leq 1 / \beta+1$.

Ideas behind the upper bound

Definition: Call the edge $\left\{x_{i}, x_{j}\right\}$ red if $x_{i} \cdot x_{j}=+\alpha$ and call it blue if $x_{i} \cdot x_{j}=-\alpha$. So we get a red-blue edge colored complete graph G on n vertices.

Lemma: For $\beta>0$, if $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ are unit vectors with $x_{i} \cdot x_{j} \leq-\beta$, then $n \leq 1 / \beta+1$.
Proof: $0 \leq\left\|\sum_{i=1}^{n} x_{i}\right\|^{2} \leq n-n(n-1) \beta$.

Ideas behind the upper bound

Definition: Call the edge $\left\{x_{i}, x_{j}\right\}$ red if $x_{i} \cdot x_{j}=+\alpha$ and call it blue if $x_{i} \cdot x_{j}=-\alpha$. So we get a red-blue edge colored complete graph G on n vertices.

Lemma: For $\beta>0$, if $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ are unit vectors with $x_{i} \cdot x_{j} \leq-\beta$, then $n \leq 1 / \beta+1$.
Proof: $0 \leq\left\|\sum_{i=1}^{n} x_{i}\right\|^{2} \leq n-n(n-1) \beta$.

So our graph has no blue clique of size larger than $1 / \alpha+1$.

Ideas behind the upper bound

Definition: Call the edge $\left\{x_{i}, x_{j}\right\}$ red if $x_{i} \cdot x_{j}=+\alpha$ and call it blue if $x_{i} \cdot x_{j}=-\alpha$. So we get a red-blue edge colored complete graph G on n vertices.

Lemma: For $\beta>0$, if $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ are unit vectors with $x_{i} \cdot x_{j} \leq-\beta$, then $n \leq 1 / \beta+1$.
Proof: $0 \leq\left\|\sum_{i=1}^{n} x_{i}\right\|^{2} \leq n-n(n-1) \beta$.

So our graph has no blue clique of size larger than $1 / \alpha+1$.

Thus by Ramsey's theorem it has a large red clique Y !

Most of the remaining vertices X connect to Y entirely via red edges.

Most of the remaining vertices X connect to Y entirely via red edges.

Now project the vectors of X onto the orthogonal complement of the span of the vectors of Y.

Most of the remaining vertices X connect to Y entirely via red edges.

Now project the vectors of X onto the orthogonal complement of the span of the vectors of Y.

Dot products become

$$
\alpha \rightarrow \epsilon
$$

$$
-\alpha \rightarrow \frac{-2 \alpha}{1-\alpha}(1-\epsilon)+\epsilon
$$

Most of the remaining vertices X connect to Y entirely via red edges.

Now project the vectors of X onto the orthogonal complement of the span of the vectors of Y.

$$
\begin{aligned}
\alpha & \rightarrow \epsilon \\
-\alpha & \rightarrow \frac{-2 \alpha}{1-\alpha}(1-\epsilon)+\epsilon
\end{aligned}
$$

Dot products become
Now consider the Gram matrix M of these new vectors.

Most of the remaining vertices X connect to Y entirely via red edges.

Now project the vectors of X onto the orthogonal complement of the span of the vectors of Y.

$$
\begin{aligned}
\alpha & \rightarrow \epsilon \\
-\alpha & \rightarrow \frac{-2 \alpha}{1-\alpha}(1-\epsilon)+\epsilon
\end{aligned}
$$

Dot products become
Now consider the Gram matrix M of these new vectors. Most of the dot products are ϵ, so M is "close" to the identity.

Most of the remaining vertices X connect to Y entirely via red edges.

Now project the vectors of X onto the orthogonal complement of the span of the vectors of Y.

$$
\begin{aligned}
\alpha & \rightarrow \epsilon \\
-\alpha & \rightarrow \frac{-2 \alpha}{1-\alpha}(1-\epsilon)+\epsilon
\end{aligned}
$$

Dot products become
Now consider the Gram matrix M of these new vectors.
Most of the dot products are ϵ, so M is "close" to the identity. Lemma (Schnirelmann 30 / Bellman 60 / Alon '09...):
For any symmetric matrix M with rank $d, \operatorname{tr}(M)^{2} \leq d \operatorname{tr}\left(M^{2}\right)$.

Equiangular subspaces

Equiangular subspaces

Question: How do we define the angle between subspaces
U and V ?

Equiangular subspaces

Question: How do we define the angle between subspaces
U and V ?
Naive idea: Take the minimum angle between any pair of vectors $u \in U, v \in V$.

Equiangular subspaces

Question: How do we define the angle between subspaces U and V ?
Naive idea: Take the minimum angle between any pair of vectors $u \in U, v \in V$.

Doesn't appeal to elementary geometric intuition!

Equiangular subspaces

Question: How do we define the angle between subspaces U and V ?

Naive idea: Take the minimum angle between any pair of vectors $u \in U, v \in V$.

Doesn't appeal to elementary geometric intuition!

We represent a k-dimensional subspace of \mathbb{R}^{n} by an $n \times k$ matrix U whose columns form an orthonormal basis for the subspace.

Equiangular subspaces

Question: How do we define the angle between subspaces U and V ?
Naive idea: Take the minimum angle between any pair of vectors $u \in U, v \in V$.

Doesn't appeal to elementary geometric intuition!

We represent a k-dimensional subspace of \mathbb{R}^{n} by an $n \times k$ matrix U whose columns form an orthonormal basis for the subspace.
Full answer: There are k principal angles $0 \leq \theta_{1} \leq \ldots \theta_{k} \leq \pi / 2$ between U and V, defined by $\theta_{i}=\arccos \sqrt{\lambda_{i}}$ where $1 \geq \lambda_{1} \geq \ldots \geq \lambda_{k} \geq 0$ are the eigenvalues of $V^{T} U U^{T} V$.

Theorem (Blokhuis '93): There are no more than $\binom{2 d+3}{4}$ 'equiangular' planes in \mathbb{R}^{d} (each pair of planes has the same $\theta_{1}>0$.)

Theorem (Blokhuis '93): There are no more than $\binom{2 d+3}{4}$ 'equiangular' planes in \mathbb{R}^{d} (each pair of planes has the same $\theta_{1}>0$.)

Definition: We call a set of subspaces H equiangular with angle θ, if θ is a principal angle between any $U, V \in H$.

Theorem (Blokhuis '93):
There are no more than $\binom{2 d+3}{4}$ 'equiangular' planes in \mathbb{R}^{d} (each pair of planes has the same $\theta_{1}>0$.)

Definition: We call a set of subspaces H equiangular with angle θ, if θ is a principal angle between any $U, V \in H$.

Theorem (B., Sudakov):
For any $\theta>0$, there are no more than $\binom{\binom{d+1}{2}+k-1}{k}$
k-dimensional subspaces in \mathbb{R}^{n} that are equiangular with angle θ.

Theorem (B., Sudakov):
For any $\theta>0$, there are no more than
k-dimensional subspaces in \mathbb{R}^{n} that are equiangular with angle θ.

Theorem (B., Sudakov):
For any $\theta>0$, there are no more than

$$
\binom{\binom{d+1}{2}+k-1}{k}
$$

k-dimensional subspaces in \mathbb{R}^{n} that are equiangular with angle θ.
Proof: Let U_{1}, \ldots, U_{n} be the matrices for the given subspaces.
Then $\operatorname{det}\left(U_{i}^{\top} U_{j} U_{j}^{\top} U_{i}-\lambda I\right)=0$ for $\lambda=(\cos \theta)^{2}$.

Theorem (B., Sudakov):
For any $\theta>0$, there are no more than

$$
\binom{\binom{d+1}{2}+k-1}{k}
$$

k-dimensional subspaces in \mathbb{R}^{n} that are equiangular with angle θ.
Proof: Let U_{1}, \ldots, U_{n} be the matrices for the given subspaces.
Then $\operatorname{det}\left(U_{i}^{\top} U_{j} U_{j}^{\top} U_{i}-\lambda I\right)=0$ for $\lambda=(\cos \theta)^{2}$.
Let $\mathbb{S}^{n}=\left\{S \in \mathbb{R}^{n \times n}: S^{\boldsymbol{\top}}=S\right\}$ be the set of real symmetric matrices.

Theorem (B., Sudakov):
For any $\theta>0$, there are no more than

$$
\binom{\binom{d+1}{2}+k-1}{k}
$$

k-dimensional subspaces in \mathbb{R}^{n} that are equiangular with angle θ.
Proof: Let U_{1}, \ldots, U_{n} be the matrices for the given subspaces.
Then $\operatorname{det}\left(U_{i}^{\top} U_{j} U_{j}^{\top} U_{i}-\lambda I\right)=0$ for $\lambda=(\cos \theta)^{2}$.
Let $\mathbb{S}^{n}=\left\{S \in \mathbb{R}^{n \times n}: S^{\top}=S\right\}$ be the set of real symmetric matrices.
Define $f_{i}: \mathbb{S}^{n} \rightarrow \mathbb{R}$ by $f_{i}(S)=\operatorname{det}\left(U_{i}^{\top} S U_{i}-\frac{\lambda}{k} \operatorname{tr}(S)\right)$

Theorem (B., Sudakov):
For any $\theta>0$, there are no more than

$$
\binom{\binom{d+1}{2}+k-1}{k}
$$

k-dimensional subspaces in \mathbb{R}^{n} that are equiangular with angle θ.
Proof: Let U_{1}, \ldots, U_{n} be the matrices for the given subspaces.
Then $\operatorname{det}\left(U_{i}^{\top} U_{j} U_{j}^{\top} U_{i}-\lambda I\right)=0$ for $\lambda=(\cos \theta)^{2}$.
Let $\mathbb{S}^{n}=\left\{S \in \mathbb{R}^{n \times n}: S^{\top}=S\right\}$ be the set of real symmetric matrices.
Define $f_{i}: \mathbb{S}^{n} \rightarrow \mathbb{R}$ by $f_{i}(S)=\operatorname{det}\left(U_{i}^{\top} S U_{i}-\frac{\lambda}{k} \operatorname{tr}(S)\right)$
Note that they are all homogeneous polynomials of degree k in the variables $S_{a, b}: 1 \leq a \leq b \leq d$.

Theorem (B., Sudakov):
For any $\theta>0$, there are no more than

$$
\binom{\binom{d+1}{2}+k-1}{k}
$$

k-dimensional subspaces in \mathbb{R}^{n} that are equiangular with angle θ.
Proof: Let U_{1}, \ldots, U_{n} be the matrices for the given subspaces.
Then $\operatorname{det}\left(U_{i}^{\top} U_{j} U_{j}^{\top} U_{i}-\lambda I\right)=0$ for $\lambda=(\cos \theta)^{2}$.
Let $\mathbb{S}^{n}=\left\{S \in \mathbb{R}^{n \times n}: S^{\top}=S\right\}$ be the set of real symmetric matrices.
Define $f_{i}: \mathbb{S}^{n} \rightarrow \mathbb{R}$ by $f_{i}(S)=\operatorname{det}\left(U_{i}^{\top} S U_{i}-\frac{\lambda}{k} \operatorname{tr}(S)\right)$
Note that they are all homogeneous polynomials of degree k in the variables $S_{a, b}: 1 \leq a \leq b \leq d$.

Now observe that

$$
f_{i}\left(U_{j} U_{j}^{\top}\right)=\operatorname{det}\left(U_{i}^{\top} U_{j} U_{j}^{\top} U_{i}-\lambda I\right)= \begin{cases}0 & i \neq j \\ (1-\lambda)^{k} & i=j\end{cases}
$$

Theorem (B., Sudakov):
For any $\theta>0$, there are no more than

$$
\binom{\binom{d+1}{2}+k-1}{k}
$$

k-dimensional subspaces in \mathbb{R}^{n} that are equiangular with angle θ.
Proof: Let U_{1}, \ldots, U_{n} be the matrices for the given subspaces.
Then $\operatorname{det}\left(U_{i}^{\top} U_{j} U_{j}^{\top} U_{i}-\lambda I\right)=0$ for $\lambda=(\cos \theta)^{2}$.
Let $\mathbb{S}^{n}=\left\{S \in \mathbb{R}^{n \times n}: S^{\top}=S\right\}$ be the set of real symmetric matrices.
Define $f_{i}: \mathbb{S}^{n} \rightarrow \mathbb{R}$ by $f_{i}(S)=\operatorname{det}\left(U_{i}^{\top} S U_{i}-\frac{\lambda}{k} \operatorname{tr}(S)\right)$
Note that they are all homogeneous polynomials of degree k in the variables $S_{a, b}: 1 \leq a \leq b \leq d$.

Now observe that

$$
f_{i}\left(U_{j} U_{j}^{\top}\right)=\operatorname{det}\left(U_{i}^{\top} U_{j} U_{j}^{\top} U_{i}-\lambda I\right)= \begin{cases}0 & i \neq j \\ (1-\lambda)^{k} & i=j\end{cases}
$$

and hence f_{1}, \ldots, f_{n} are linearly independent.

Question: Let α be fixed and d be large. What is the maximum number of equiangular lines in \mathbb{R}^{d} with a given angle α ?

Question: Let α be fixed and d be large. What is the maximum number of equiangular lines in \mathbb{R}^{d} with a given angle α ?

Conjecture:
If $\alpha=\frac{1}{2 r+1}$ for integer r, then the maximum number of equiangular lines is $\left(1+\frac{1}{r}+o(1)\right) d$.

Question: Let α be fixed and d be large. What is the maximum number of equiangular lines in \mathbb{R}^{d} with a given angle α ?

Conjecture:
If $\alpha=\frac{1}{2 r+1}$ for integer r, then the maximum number of equiangular lines is $\left(1+\frac{1}{r}+o(1)\right) d$.

DONE

