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For d = 2, 3 Greeks?

Not an example!
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3 lines
In general, d-simplex  
gives d+1 lines:

d = 3:

6 lines

Triangle

Icosahedron d = 7:

28 lines
Take all 28 

permutations of the 
vector 

(3,3,-1,-1,-1,-1,-1,-1). 



Theorem (Gerzon): The number of equiangular lines in       is at 
most           .



Theorem (Gerzon): The number of equiangular lines in       is at 
most           .

Proof: Let                    be unit vectors along the given lines. 
Then                         for some                   .



Consider the projection matrices                             . They live 
in the           dimensional space of symmetric matrices and they 
are linearly independent:

Theorem (Gerzon): The number of equiangular lines in       is at 
most           .

Proof: Let                    be unit vectors along the given lines. 
Then                         for some                   .



Consider the projection matrices                             . They live 
in the           dimensional space of symmetric matrices and they 
are linearly independent:

                                            is an inner product of matrices and

Theorem (Gerzon): The number of equiangular lines in       is at 
most           .

Proof: Let                    be unit vectors along the given lines. 
Then                         for some                   .



Consider the projection matrices                             . They live 
in the           dimensional space of symmetric matrices and they 
are linearly independent:

                                            is an inner product of matrices and

Theorem (Gerzon): The number of equiangular lines in       is at 
most           .

Proof: Let                    be unit vectors along the given lines. 
Then                         for some                   .



Consider the projection matrices                             . They live 
in the           dimensional space of symmetric matrices and they 
are linearly independent:

                                            is an inner product of matrices and

Theorem (Gerzon): The number of equiangular lines in       is at 
most           .

Proof: Let                    be unit vectors along the given lines. 
Then                         for some                   .

Question: Can we have            lines in      ?
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Definition: Orthonormal bases            in       are called mutually 
unbiased if 

Theorem (Cameron, Seidel 73 / Calderbank, Cameron, Kantor, Seidel 97): 
There exist                pairwise mutually unbiased bases in      , 
when            .       

Theorem (de Caen 2000 / Jedwab, Wiebe 2015 / Greaves, Koolen, 
Munemasa, Szöllősi 2015): There exist            equiangular lines in     
for an infinite number of    .

Question: What if the angle is fixed, i.e. doesn’t go to zero 
with    ?
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The edge colors flip so        has more 
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Strategy: Try to bound the remaining vertices based on how 
they connect to    .

This makes               for all                      . Otherwise we have 
                               .                             

Definition: For any             , 
define        to be those                  
such that            is red for all            
          , and blue for all                .

If                  has more blue than red 
edges to    , then negate    .
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Lemma 2 to               , to conclude 
that
Thus we have that  

which we can make         , by having                    
                 slowly enough.

For any             , if we apply Lemma 2 
to         and the blue neighborhood 
of    , we see that the blue degree of        
   is at most                     .
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So it remains to bound      .
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                   are the nonzero eigenvalues of     , so the result 
follows by Cauchy-Schwarz.

Theorem 
Complete!

Now we compute



Open Questions



Conjecture: If                   for integer   , then the number of 
equiangular lines in       with angle      is at most                  . 

Open Questions



Conjecture: If                   for integer   , then the number of 
equiangular lines in       with angle      is at most                  . 

Open Questions

Question: How many equiangular lines in       can we have for  
                        where                        ?



Conjecture: If                   for integer   , then the number of 
equiangular lines in       with angle      is at most                  . 

Open Questions

Question: How many equiangular lines in       can we have for  
                        where                        ?

Done!


