EQUIANGULAR LINES

By: Igor Balla

Joint work with: Felix Dräxler, Peter Keevash, Benny Sudakov

Not an example!

Not an example!

Question: What is the maximum number of equiangular lines in \mathbb{R}^d ?

Not an example!

Question: What is the maximum number of equiangular lines in \mathbb{R}^d ?

Earliest work: Haantjes, Seidel 47-48 Blumenthal 49 Van Lint, Seidel 66 Lemmens, Seidel 73

Not an example!

Question: What is the maximum number of equiangular lines in \mathbb{R}^d ?

Earliest work: Haantjes, Seidel 47-48 Blumenthal 49 Van Lint, Seidel 66 Lemmens, Seidel 73

For
$$d = 2, 3$$
 Greeks?

Proof: Let x_1, \ldots, x_n be unit vectors along the given lines. Then $x_i \cdot x_j = \pm \alpha$ for some $0 \le \alpha < 1$.

Proof: Let x_1, \ldots, x_n be unit vectors along the given lines. Then $x_i \cdot x_j = \pm \alpha$ for some $0 \le \alpha < 1$.

Consider the projection matrices $x_1x_1^{\mathsf{T}}, \ldots, x_nx_n^{\mathsf{T}}$. They live in the $\binom{d+1}{2}$ dimensional space of symmetric matrices and they are linearly independent:

Proof: Let x_1, \ldots, x_n be unit vectors along the given lines. Then $x_i \cdot x_j = \pm \alpha$ for some $0 \le \alpha < 1$.

Consider the projection matrices $x_1x_1^T, \ldots, x_nx_n^T$. They live in the $\binom{d+1}{2}$ dimensional space of symmetric matrices and they are linearly independent:

 $tr(A^TB) = \sum_{i,j} A_{i,j}B_{i,j}$ is an inner product of matrices and

Proof: Let x_1, \ldots, x_n be unit vectors along the given lines. Then $x_i \cdot x_j = \pm \alpha$ for some $0 \le \alpha < 1$.

Consider the projection matrices $x_1x_1^T, \ldots, x_nx_n^T$. They live in the $\binom{d+1}{2}$ dimensional space of symmetric matrices and they are linearly independent:

 $tr(A^{T}B) = \sum_{i,j} A_{i,j}B_{i,j}$ is an inner product of matrices and

$$\operatorname{tr}(x_i x_i^{\mathsf{T}} x_j x_j^{\mathsf{T}}) = (x_i^{\mathsf{T}} x_j)^2 = \begin{cases} 1 & i = j \\ \alpha^2 & i \neq j. \end{cases}$$

Proof: Let x_1, \ldots, x_n be unit vectors along the given lines. Then $x_i \cdot x_j = \pm \alpha$ for some $0 \le \alpha < 1$.

Consider the projection matrices $x_1x_1^T, \ldots, x_nx_n^T$. They live in the $\binom{d+1}{2}$ dimensional space of symmetric matrices and they are linearly independent:

 $tr(A^TB) = \sum_{i,j} A_{i,j}B_{i,j}$ is an inner product of matrices and

$$\operatorname{tr}(x_i x_i^{\mathsf{T}} x_j x_j^{\mathsf{T}}) = (x_i^{\mathsf{T}} x_j)^2 = \begin{cases} 1 & i = j \\ \alpha^2 & i \neq j. \end{cases}$$

Question: Can we have $\Omega(d^2)$ lines in \mathbb{R}^d ?

Definition: Orthonormal bases B, B' in \mathbb{R}^d are called **mutually unbiased** if $x \cdot y = \frac{1}{\sqrt{d}}$ $\forall x \in B, y \in B'$.

Definition: Orthonormal bases B, B' in \mathbb{R}^d are called **mutually unbiased** if $x \cdot y = \frac{1}{\sqrt{d}}$ $\forall x \in B, y \in B'$.

Theorem (Cameron, Seidel 73 / Calderbank, Cameron, Kantor, Seidel 97): There exist d/2 + 1 pairwise mutually unbiased bases in \mathbb{R}^d , when $d = 4^k$. **Definition:** Orthonormal bases B, B' in \mathbb{R}^d are called **mutually unbiased** if $x \cdot y = \frac{1}{\sqrt{d}}$ $\forall x \in B, y \in B'$.

Theorem (Cameron, Seidel 73 / Calderbank, Cameron, Kantor, Seidel 97): There exist d/2 + 1 pairwise mutually unbiased bases in \mathbb{R}^d , when $d = 4^k$.

Theorem (de Caen 2000 / Jedwab, Wiebe 2015 / Greaves, Koolen, Munemasa, Szöllősi 2015): There exist $\Omega(d^2)$ equiangular lines in \mathbb{R}^d for an infinite number of d. **Definition:** Orthonormal bases B, B' in \mathbb{R}^d are called **mutually unbiased** if $x \cdot y = \frac{1}{\sqrt{d}}$ $\forall x \in B, y \in B'$.

Theorem (Cameron, Seidel 73 / Calderbank, Cameron, Kantor, Seidel 97): There exist d/2 + 1 pairwise mutually unbiased bases in \mathbb{R}^d , when $d = 4^k$.

Theorem (de Caen 2000 / Jedwab, Wiebe 2015 / Greaves, Koolen, Munemasa, Szöllősi 2015): There exist $\Omega(d^2)$ equiangular lines in \mathbb{R}^d for an infinite number of d.

Remark: These constructions all have an angle of $\Theta\left(\frac{1}{\sqrt{d}}\right) \to 0$.

Definition: Orthonormal bases B, B' in \mathbb{R}^d are called **mutually unbiased** if $x \cdot y = \frac{1}{\sqrt{d}}$ $\forall x \in B, y \in B'$.

Theorem (Cameron, Seidel 73 / Calderbank, Cameron, Kantor, Seidel 97): There exist d/2 + 1 pairwise mutually unbiased bases in \mathbb{R}^d , when $d = 4^k$.

Theorem (de Caen 2000 / Jedwab, Wiebe 2015 / Greaves, Koolen, Munemasa, Szöllősi 2015): There exist $\Omega(d^2)$ equiangular lines in \mathbb{R}^d for an infinite number of d.

Remark: These constructions all have an angle of $\Theta\left(\frac{1}{\sqrt{d}}\right) \to 0$.

Question: What if the angle is fixed, i.e. doesn't go to zero with d?

Construction of 2d-2 lines with $\alpha=1/3$

Definition: For any vectors $x_1, \ldots, x_n \in \mathbb{R}^d$, the Gramian matrix A is defined by $A_{i,j} = x_i \cdot x_j$.

Construction of 2d - 2 lines with $\alpha = 1/3$

Definition: For any vectors $x_1, \ldots, x_n \in \mathbb{R}^d$, the Gramian matrix A is defined by $A_{i,j} = x_i \cdot x_j$.

It is $n \times n$, symmetric, positive semidefinite and has rank at most d.

Construction of 2d-2 lines with $\alpha = 1/3$

Definition: For any vectors $x_1, \ldots, x_n \in \mathbb{R}^d$, the Gramian matrix A is defined by $A_{i,j} = x_i \cdot x_j$.

It is $n \times n$, symmetric, positive semidefinite and has rank at most d.

Actually, these conditions are also sufficient, so...

Construction of 2d - 2 lines with $\alpha = 1/3$

Definition: For any vectors $x_1, \ldots, x_n \in \mathbb{R}^d$, the Gramian matrix A is defined by $A_{i,j} = x_i \cdot x_j$.

It is $n \times n$, symmetric, positive semidefinite and has rank at most d.

Actually, these conditions are also sufficient, so...

2d-2 2d-2 $\begin{pmatrix} 1 & -1/3 \\ -1/3 & 1 \end{pmatrix}$ 2d-2 \ddots 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3

Construction of 2d - 2 lines with $\alpha = 1/3$

Definition: For any vectors $x_1, \ldots, x_n \in \mathbb{R}^d$, the Gramian matrix A is defined by $A_{i,j} = x_i \cdot x_j$.

It is $n \times n$, symmetric, positive semidefinite and has rank at most d.

Actually, these conditions are also sufficient, so...

eigenvalue multiplicity

$$\frac{2}{3}(d-1)$$
 1
 $4/3$ $d-1$ $2d-2$
 0 $d-2$
 $1/3$ $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$
 $1/3$

Definition: Call the edge $\{x_i, x_j\}$ red if $x_i \cdot x_j = +\alpha$ and call it blue if $x_i \cdot x_j = -\alpha$. So we get a red-blue edge colored complete graph G on n vertices.

Definition: Call the edge $\{x_i, x_j\}$ red if $x_i \cdot x_j = +\alpha$ and call it blue if $x_i \cdot x_j = -\alpha$. So we get a red-blue edge colored complete graph G on n vertices.

Lemma 1: For $\beta > 0$, if $x_1, \ldots, x_n \in \mathbb{R}^d$ are unit vectors with $x_i \cdot x_j \leq -\beta$, then $n \leq 1/\beta + 1$.

Definition: Call the edge $\{x_i, x_j\}$ red if $x_i \cdot x_j = +\alpha$ and call it blue if $x_i \cdot x_j = -\alpha$. So we get a red-blue edge colored complete graph G on n vertices.

Lemma 1: For $\beta > 0$, if $x_1, \ldots, x_n \in \mathbb{R}^d$ are unit vectors with $x_i \cdot x_j \leq -\beta$, then $n \leq 1/\beta + 1$.

Proof: $0 \le \|\sum_{i=1}^n x_i\|^2 \le n - n(n-1)\beta.$

Definition: Call the edge $\{x_i, x_j\}$ red if $x_i \cdot x_j = +\alpha$ and call it blue if $x_i \cdot x_j = -\alpha$. So we get a red-blue edge colored complete graph G on n vertices.

Lemma 1: For $\beta > 0$, if $x_1, \ldots, x_n \in \mathbb{R}^d$ are unit vectors with $x_i \cdot x_j \leq -\beta$, then $n \leq 1/\beta + 1$.

Proof: $0 \le \|\sum_{i=1}^n x_i\|^2 \le n - n(n-1)\beta.$

So our graph has no blue clique of size larger than $1/\alpha + 1$.

Definition: Call the edge $\{x_i, x_j\}$ red if $x_i \cdot x_j = +\alpha$ and call it blue if $x_i \cdot x_j = -\alpha$. So we get a red-blue edge colored complete graph G on n vertices.

Lemma 1: For $\beta > 0$, if $x_1, \ldots, x_n \in \mathbb{R}^d$ are unit vectors with $x_i \cdot x_j \leq -\beta$, then $n \leq 1/\beta + 1$.

Proof: $0 \le \|\sum_{i=1}^n x_i\|^2 \le n - n(n-1)\beta.$

So our graph has no blue clique of size larger than $1/\alpha + 1$.

Thus by Ramsey's theorem it has a large red clique Y. Note that we can take $|Y| \rightarrow \infty$ as slowly as we need.

Definition: For any $T \subseteq Y$, define S_T to be those $x \in G \setminus Y$ such that $\{x, y\}$ is red for all $y \in T$, and blue for all $y \in Y \setminus T$.

Definition: For any $T \subseteq Y$, define S_T to be those $x \in G \setminus Y$ such that $\{x, y\}$ is red for all $y \in T$, and blue for all $y \in Y \setminus T$.

If $x \in G \setminus Y$ has more blue than red edges to Y, then negate x.

Definition: For any $T \subseteq Y$, define S_T to be those $x \in G \setminus Y$ such that $\{x, y\}$ is red for all $y \in T$, and blue for all $y \in Y \setminus T$.

If $x \in G \setminus Y$ has more blue than red edges to Y, then negate x. The edge colors flip so -x has more

red than blue edges to Y.

T

Definition: For any $T \subseteq Y$, define S_T to be those $x \in G \setminus Y$ such that $\{x, y\}$ is red for all $y \in T$, and blue for all $y \in Y \setminus T$.

If $x \in G \setminus Y$ has more blue than red edges to Y, then negate x.

The edge colors flip so -x has more red than blue edges to Y.

This makes $S_T = \emptyset$ for all |T| < |Y|/2. Otherwise we have $|T| \ge |Y|/2 \to \infty$.

Lemma 2: If T is a red clique with $|T| \to \infty$ and X, z are such that all edges from T to $X \cup \{z\}$ are red and all edges from z to X are blue, then

Lemma 2: If T is a red clique with $|T| \rightarrow \infty$ and X, z are such that all edges from T to $X \cup \{z\}$ are red and all edges from z to X are blue, then

Proof: Project X onto the orthogonal complement of the span of $T \cup \{z\}$ and normalize.

Lemma 2: If T is a red clique with $|T| \rightarrow \infty$ and X, z are such that all edges from T to $X \cup \{z\}$ are red and all edges from z to X are blue, then

Proof: Project X onto the orthogonal complement of the span of $T \cup \{z\}$ and normalize. Then all inner products become at most $\frac{-\beta^2}{1-\beta^2} + o(1)$

Lemma 2: If T is a red clique with $|T| \to \infty$ and X, z are such that all edges from T to $X \cup \{z\}$ are red and all edges from z to X are blue, then

 $\begin{array}{l} \textbf{Proof: Project } X \text{ onto the orthogonal complement of the} \\ \text{span of } T \cup \{z\} \text{ and normalize.} \\ \text{Then all inner products become at most } \frac{-\beta^2}{1-\beta^2} + o(1), \text{ so by} \\ \text{Lemma 1} \\ |X| \leq \frac{1-\beta^2}{\beta^2} + o(1) + 1 = \frac{1}{\beta^2} + o(1). \end{array}$

Suppose $|Y|/2 \le |T| < |Y|$.

Choose some $z \in Y \setminus T$, and apply Lemma 2 to T, S_T, z , to conclude that $|S_T| \leq 1/\beta^2 + o(1)$.

Thus we have that

$$\sum_{|T| < Y} |S_T| \le 2^{|Y|} (1/\beta^2 + o(1))$$

which we can make $o(d)$, by having

 $|Y| \to \infty$ slowly enough.

Suppose $|Y|/2 \le |T| < |Y|$.

Choose some $z \in Y \setminus T$, and apply Lemma 2 to T, S_T, z , to conclude that $|S_T| \leq 1/\beta^2 + o(1)$.

Thus we have that $\sum_{|T| < Y} |S_T| \le 2^{|Y|} (1/\beta^2 + o(1))$ which we can make o(d), by having

 $|Y| \to \infty$ slowly enough.

So it remains to bound S_Y .

Suppose $|Y|/2 \le |T| < |Y|$.

Choose some $z \in Y \setminus T$, and apply Lemma 2 to T, S_T, z , to conclude that $|S_T| \leq 1/\beta^2 + o(1)$.

Thus we have that $\sum_{|T| < Y} |S_T| \le 2^{|Y|} (1/\beta^2 + o(1))$ which we can make o(d), by having $|Y| \to \infty$ slowly enough.

So it remains to bound S_Y .

For any $x \in S_Y$, if we apply Lemma 2 to Y, x and the blue neighborhood of x, we see that the blue degree of x is at most $1/\beta^2 + o(1)$.

Now project S_Y onto the orthogonal complement of Y.

So the Gramian A of these vectors looks like

1
$$\varepsilon, -\beta + o(1)$$

$$\varepsilon, -\beta + o(1)$$
 .

So the Gramian A of these vectors looks like

$$egin{aligned} 1 & arepsilon, & -eta+o(1) \ & 1 & arepsilon, & -eta+o(1) & arepsilon & a$$

So the Gramian A of these vectors looks like

Every row has at most $\begin{pmatrix} 1 & \varepsilon, -\beta + o(1) \\ 1 & \ddots & 0 \\ 1 & \ddots & 0 \end{pmatrix}$ rank at most d imension $m = |S_Y|$ that are $-\beta + o(1)$.

So the Gramian A of these vectors looks like

Every row has at most $\begin{pmatrix} 1 & \varepsilon, -\beta + o(1) \\ 1/\beta^2 + o(1) \text{ entries} \\ \text{that are } -\beta + o(1). \end{pmatrix}$ rank at most d dimension $m = |S_Y|$

Thus if J is the all 1 matrix, then $M = A - \varepsilon J$ looks like $\begin{pmatrix} 1 - o(1) & 0, -\beta + o(1) \\ 0, -\beta + o(1) & \ddots & 0 \\ 0, -\beta + o(1) & \ddots & 0 \\ 1 - o(1) & 0 \end{pmatrix}$

So the Gramian A of these vectors looks like

Every row has at most $\begin{pmatrix} 1 & \varepsilon, -\beta + o(1) \\ 1 & \ddots & 0 \\ 1 & \ddots & 0 \end{pmatrix}$ rank at most d imension $m = |S_Y|$ that are $-\beta + o(1)$.

Thus if J is the all 1 matrix, then $M = A - \varepsilon J$ looks like $\begin{pmatrix} 1 - o(1) & 0, -\beta + o(1) \\ & 1 - o(1) & 0, -\beta + o(1) \\ & 0, -\beta + o(1) & \ddots \\ & & 1 - o(1) \end{pmatrix}$

and the rank r of M is at most $rk(A) + rk(-\epsilon J) \le d + 1$.

Lemma 3: For any matrix M with rank r and real eigenvalues $tr(M)^2 \leq r tr(M^2)$.

Proof: $\operatorname{tr}(M) = \sum_{i=1}^{r} \lambda_i$ and $\operatorname{tr}(M^2) = \sum_{i=1}^{r} \lambda_i^2$ where $\lambda_1, \ldots, \lambda_r$ are the nonzero eigenvalues of M, so the result follows by Cauchy-Schwarz.

Lemma 3: For any matrix M with rank r and real eigenvalues $tr(M)^2 \leq r tr(M^2)$.

Proof: $\operatorname{tr}(M) = \sum_{i=1}^{r} \lambda_i$ and $\operatorname{tr}(M^2) = \sum_{i=1}^{r} \lambda_i^2$ where $\lambda_1, \ldots, \lambda_r$ are the nonzero eigenvalues of M, so the result follows by Cauchy-Schwarz.

Now we compute

$$\operatorname{tr}(M) = m(1 - o(1))$$

Proof: $\operatorname{tr}(M) = \sum_{i=1}^{r} \lambda_i$ and $\operatorname{tr}(M^2) = \sum_{i=1}^{r} \lambda_i^2$ where $\lambda_1, \ldots, \lambda_r$ are the nonzero eigenvalues of M, so the result follows by Cauchy-Schwarz.

Now we compute tr(M) = m(1 - o(1)) $tr(M^2) = \sum_{i,j} (M_{i,j})^2$

Proof: $\operatorname{tr}(M) = \sum_{i=1}^{r} \lambda_i$ and $\operatorname{tr}(M^2) = \sum_{i=1}^{r} \lambda_i^2$ where $\lambda_1, \ldots, \lambda_r$ are the nonzero eigenvalues of M, so the result follows by Cauchy-Schwarz.

Now we compute $\operatorname{tr}(M) = m(1 - o(1))$ $\operatorname{tr}(M^2) = \sum (M_{i,j})^2 \le m \left(1 + \left(\frac{1}{\beta^2} + o(1) \right) \left(-\beta + o(1) \right)^2 \right)$

Proof: $\operatorname{tr}(M) = \sum_{i=1}^{r} \lambda_i$ and $\operatorname{tr}(M^2) = \sum_{i=1}^{r} \lambda_i^2$ where $\lambda_1, \ldots, \lambda_r$ are the nonzero eigenvalues of M, so the result follows by Cauchy-Schwarz.

Now we compute tr(M) = m(1 - o(1)) $tr(M^{2}) = \sum_{i,j} (M_{i,j})^{2} \le m \left(1 + \left(\frac{1}{\beta^{2}} + o(1)\right) (-\beta + o(1))^{2}\right)$ = m(2 + o(1)). **Lemma 3:** For any matrix M with rank r and real eigenvalues $tr(M)^2 \leq r tr(M^2)$.

Proof: $\operatorname{tr}(M) = \sum_{i=1}^{r} \lambda_i$ and $\operatorname{tr}(M^2) = \sum_{i=1}^{r} \lambda_i^2$ where $\lambda_1, \ldots, \lambda_r$ are the nonzero eigenvalues of M, so the result follows by Cauchy-Schwarz.

Now we compute tr(M) = m(1 - o(1)) $tr(M^2) = \sum_{i,j} (M_{i,j})^2 \le m \left(1 + \left(\frac{1}{\beta^2} + o(1)\right) (-\beta + o(1))^2\right)$ = m(2 + o(1)).

Thus Lemma 3 gives $(m(1 - o(1)))^2 \le rm(2 + o(1))$

Proof: $\operatorname{tr}(M) = \sum_{i=1}^{r} \lambda_i$ and $\operatorname{tr}(M^2) = \sum_{i=1}^{r} \lambda_i^2$ where $\lambda_1, \ldots, \lambda_r$ are the nonzero eigenvalues of M, so the result follows by Cauchy-Schwarz.

Now we compute tr(M) = m(1 - o(1)) $tr(M^2) = \sum_{i,j} (M_{i,j})^2 \le m \left(1 + \left(\frac{1}{\beta^2} + o(1)\right) (-\beta + o(1))^2\right)$ = m(2 + o(1)).

Thus Lemma 3 gives $(m(1 - o(1)))^2 \le rm(2 + o(1))$

 $m \leq r(2 + o(1)).$

Lemma 3: For any matrix M with rank r and real eigenvalues $tr(M)^2 \leq r tr(M^2)$.

Proof: $\operatorname{tr}(M) = \sum_{i=1}^{r} \lambda_i$ and $\operatorname{tr}(M^2) = \sum_{i=1}^{r} \lambda_i^2$ where $\lambda_1, \ldots, \lambda_r$ are the nonzero eigenvalues of M, so the result follows by Cauchy-Schwarz.

Now we compute tr(M) = m(1 - o(1)) $tr(M^2) = \sum_{i,j} (M_{i,j})^2 \le m \left(1 + \left(\frac{1}{\beta^2} + o(1)\right) (-\beta + o(1))^2\right)$ = m(2 + o(1)).

Thus Lemma 3 gives $(m(1 - o(1)))^2 \le rm(2 + o(1))$

 $m \leq r(2 + o(1)).$ Theorem Complete!

Open Questions

Open Questions

Conjecture: If $\alpha = \frac{1}{2r+1}$ for integer r, then the number of equiangular lines in \mathbb{R}^d with angle α is at most $(1 + \frac{1}{r}) d$.

Open Questions

Conjecture: If $\alpha = \frac{1}{2r+1}$ for integer r, then the number of equiangular lines in \mathbb{R}^d with angle α is at most $(1 + \frac{1}{r}) d$.

Question: How many equiangular lines in \mathbb{R}^d can we have for $\alpha = \Theta(1/d^{\gamma})$ where $0 < \gamma < 1/2$?

Open Questions

Conjecture: If $\alpha = \frac{1}{2r+1}$ for integer r, then the number of equiangular lines in \mathbb{R}^d with angle α is at most $(1 + \frac{1}{r}) d$.

Question: How many equiangular lines in \mathbb{R}^d can we have for $\alpha = \Theta(1/d^{\gamma})$ where $0 < \gamma < 1/2$?

