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Triangle In general, d-simplex
gives d+1 lines:

d=13: lcosahedron d=7: Take all 28

permutations of the

6 lines . - 28 lines

vector
(3,3,-1,-1,-1,-1,-1,-1).
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Question: Can we have £(d?) lines in R%?
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Theorem (Cameron, Seidel 73 / Calderbank, Cameron, Kantor, Seidel 97):
There exist d/2 + 1 pairwise mutually unbiased bases in R,

when d = 4%

Theorem (de Caen 2000 / Jedwab, Wiebe 2015 / Greaves, Koolen,
Munemasa, Sz8lI3si 2015): There exist £(d*) equiangular lines in R®
for an infinite number of d.

Remark: These constructions all have an angle of © (ﬁ) — ().

Question: What if the angle is fixed, i.e. doesn’t go to zero
with d ?
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Construction of 2d — 2 lines with o = 1/3

Definition: For any vectors Z1,...,Z, € ]Rd, the Gramian
matrix A is defined by A; ; = z; - ;.

It is n X n, symmetric, positive semidefinite and has rank at
most d.

Actually, these conditions are also sufficient, so...

2d — 2
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0 d— 2
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Definition: Call the edge {z;,z;} red if z; - £; = +a and call
it blue if ;- *; = —. So we get a red-blue edge colored
complete graph G on n vertices.

Lemma 1: For 8 >0,if z1,...,Z, € R? are unit vectors with
T;-T; < —B3,thenn<1/8+1.

Proof: 0 < || > 7, z;||* <mn —n(n—1)8.

So our graph has no blue clique of size larger than 1/a + 1.

Thus by Ramsey’s theorem it has a large red clique Y. Note that
we can take |Y| — oo as slowly as we need.
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Strategy: Try to bound the remaining vertices based on how

they connect to Y. Y

Definition: Forany T'C Y,
define ST to be those z € G\Y

such that {x, ¥} is red for all
y € T, and blue forally € Y\T

If £ € G\Y has more blue than red
edges to Y, then negate .

The edge colors flip so —z has more
red than blue edges to Y.

This makes St = @ for all |T'| < |Y'|/2. Otherwise we have
T >|Y|/2 > 0.
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Choose some z € Y\T, and apply
Lemma 2 to T, ST, z, to conclude

that |S7| < 1/8% + o(1).

Thus we have that

> iri<y |ST| < 2W1(1/52 + o(1))

which we can make o(d), by having
Y| — oo slowly enough.

So it remains to bound Sy-.

For any z € Sy, if we apply Lemma 2
to Y, x and the blue neighborhood
of x, we see that the blue degree of
z is at most 1/3% + o(1).
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Then for any red edge, the inner product becomes € = o(1)

and for any blue edge it becomes — + o(1) .

So the Gramian A of these vectors looks like

Every row has at most e,—B + o(1) rank at most d
1/8% + o(1) entries i dimension m = |Sy|

that are —8 + o(1). e,—B +o(1) |

Thus if .J is the all 1 matrix, then M = A — .J looks like
( 1—o0(1)

1= 0(1) 0,—8+ o(1)

0,—8+ o(1)

\ | 1 —o0(1)




Now project Sy onto the orthogonal complement of Y.
Then for any red edge, the inner product becomes € = o(1)

and for any blue edge it becomes — + o(1) .

So the Gramian A of these vectors looks like

Every row has at most e,—B + o(1) rank at most d
1/8% + o(1) entries i dimension m = |Sy|

that are —8 + o(1). e,—B +o(1) |

Thus if .J is the all 1 matrix, then M = A — .J looks like
( 1—o0(1)

1= 0(1) 0,—8+ o(1)

0,—8+ o(1)

\ 1 - o(1)
and the rank r of M is at most rk(A) + rk(—eJ) < d + 1.
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Theorem
Complete!
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