

By: Igor Balla
Joint work with: Felix Dräxler, Peter Keevash, Benny Sudakov

Definition: A set of lines passing through the origin is called equiangular, if every pair of lines make the same angle.

Definition: A set of lines passing through the origin is called equiangular, if every pair of lines make the same angle.

Not an example!

Definition: A set of lines passing through the origin is called equiangular, if every pair of lines make the same angle.

Not an example!

Question: What is the maximum number of equiangular lines in \mathbb{R}^{d} ?

Definition: A set of lines passing through the origin is called equiangular, if every pair of lines make the same angle.

Not an example!

Question: What is the maximum number of equiangular lines in \mathbb{R}^{d} ?

Earliest work:
Haantjes, Seidel 47-48
Blumenthal 49
Van Lint, Seidel 66
Lemmens, Seidel 73

Definition: A set of lines passing through the origin is called equiangular, if every pair of lines make the same angle.

Not an example!

Question: What is the maximum number of equiangular lines in \mathbb{R}^{d} ?

Earliest work:
Haantjes, Seidel 47-48
Blumenthal 49
For $d=2,3$ Greeks?
Van Lint, Seidel 66
Lemmens, Seidel 73

Examples

Examples

$d=2:$

Examples

Examples

In general, d-simplex gives $d+1$ lines:

Examples

Examples

Examples

Examples

Theorem (Gerzon): The number of equiangular lines in \mathbb{R}^{d} is at most $\binom{d+1}{2}$.

Theorem (Gerzon): The number of equiangular lines in \mathbb{R}^{d} is at most $\binom{d+1}{2}$.
Proof: Let x_{1}, \ldots, x_{n} be unit vectors along the given lines. Then $x_{i} \cdot x_{j}= \pm \alpha$ for some $0 \leq \alpha<1$.

Theorem (Gerzon): The number of equiangular lines in \mathbb{R}^{d} is at most $\binom{d+1}{2}$.

Proof: Let x_{1}, \ldots, x_{n} be unit vectors along the given lines. Then $x_{i} \cdot x_{j}= \pm \alpha$ for some $0 \leq \alpha<1$.

Consider the projection matrices $x_{1} x_{1}^{\top}, \ldots, x_{n} x_{n}^{\top}$. They live in the $\binom{d+1}{2}$ dimensional space of symmetric matrices and they are linearly independent:

Theorem (Gerzon): The number of equiangular lines in \mathbb{R}^{d} is at most $\binom{d+1}{2}$.
Proof: Let x_{1}, \ldots, x_{n} be unit vectors along the given lines. Then $x_{i} \cdot x_{j}= \pm \alpha$ for some $0 \leq \alpha<1$.

Consider the projection matrices $x_{1} x_{1}^{\top}, \ldots, x_{n} x_{n}^{\top}$. They live in the $\binom{d+1}{2}$ dimensional space of symmetric matrices and they are linearly independent:
$\operatorname{tr}\left(A^{\top} B\right)=\sum_{i, j} A_{i, j} B_{i, j}$ is an inner product of matrices and

Theorem (Gerzon): The number of equiangular lines in \mathbb{R}^{d} is at most $\binom{d+1}{2}$.
Proof: Let x_{1}, \ldots, x_{n} be unit vectors along the given lines. Then $x_{i} \cdot x_{j}= \pm \alpha$ for some $0 \leq \alpha<1$.
Consider the projection matrices $x_{1} x_{1}^{\top}, \ldots, x_{n} x_{n}^{\top}$. They live in the $\binom{d+1}{2}$ dimensional space of symmetric matrices and they are linearly independent:
$\operatorname{tr}\left(A^{\top} B\right)=\sum_{i, j} A_{i, j} B_{i, j}$ is an inner product of matrices and

$$
\operatorname{tr}\left(x_{i} x_{i}^{\top} x_{j} x_{j}^{\top}\right)=\left(x_{i}^{\top} x_{j}\right)^{2}= \begin{cases}1 & i=j \\ \alpha^{2} & i \neq j .\end{cases}
$$

Theorem (Gerzon): The number of equiangular lines in \mathbb{R}^{d} is at most $\binom{d+1}{2}$.
Proof: Let x_{1}, \ldots, x_{n} be unit vectors along the given lines. Then $x_{i} \cdot x_{j}= \pm \alpha$ for some $0 \leq \alpha<1$.
Consider the projection matrices $x_{1} x_{1}^{\top}, \ldots, x_{n} x_{n}^{\top}$. They live in the $\binom{d+1}{2}$ dimensional space of symmetric matrices and they are linearly independent:
$\operatorname{tr}\left(A^{\top} B\right)=\sum_{i, j} A_{i, j} B_{i, j}$ is an inner product of matrices and

$$
\operatorname{tr}\left(x_{i} x_{i}^{\top} x_{j} x_{j}^{\top}\right)=\left(x_{i}^{\top} x_{j}\right)^{2}= \begin{cases}1 & i=j \\ \alpha^{2} & i \neq j\end{cases}
$$

Question: Can we have $\Omega\left(d^{2}\right)$ lines in \mathbb{R}^{d} ?

Definition: Orthonormal bases B, B^{\prime} in \mathbb{R}^{d} are called mutually unbiased if

$$
x \cdot y=\frac{1}{\sqrt{d}} \quad \forall x \in B, y \in B^{\prime}
$$

Definition: Orthonormal bases B, B^{\prime} in \mathbb{R}^{d} are called mutually unbiased if

$$
x \cdot y=\frac{1}{\sqrt{d}} \quad \forall x \in B, y \in B^{\prime}
$$

Theorem (Cameron, Seidel 73 / Calderbank, Cameron, Kantor, Seidel 97): There exist $d / 2+1$ pairwise mutually unbiased bases in \mathbb{R}^{d}, when $d=4^{k}$.

Definition: Orthonormal bases B, B^{\prime} in \mathbb{R}^{d} are called mutually unbiased if

$$
x \cdot y=\frac{1}{\sqrt{d}} \quad \forall x \in B, y \in B^{\prime}
$$

Theorem (Cameron, Seidel 73 / Calderbank, Cameron, Kantor, Seidel 97): There exist $d / 2+1$ pairwise mutually unbiased bases in \mathbb{R}^{d}, when $d=4^{k}$.

Theorem (de Caen 2000 / Jedwab, Wiebe 2015 / Greaves, Koolen, Munemasa, Szöllősi 2015): There exist $\Omega\left(d^{2}\right)$ equiangular lines in \mathbb{R}^{d} for an infinite number of d.

Definition: Orthonormal bases B, B^{\prime} in \mathbb{R}^{d} are called mutually unbiased if

$$
x \cdot y=\frac{1}{\sqrt{d}} \quad \forall x \in B, y \in B^{\prime}
$$

Theorem (Cameron, Seidel 73 / Calderbank, Cameron, Kantor, Seidel 97): There exist $d / 2+1$ pairwise mutually unbiased bases in \mathbb{R}^{d}, when $d=4^{k}$.

Theorem (de Caen 2000 / Jedwab, Wiebe 2015 / Greaves, Koolen, Munemasa, Szöllősi 2015): There exist $\Omega\left(d^{2}\right)$ equiangular lines in \mathbb{R}^{d} for an infinite number of d.

Remark: These constructions all have an angle of $\Theta\left(\frac{1}{\sqrt{d}}\right) \rightarrow 0$.

Definition: Orthonormal bases B, B^{\prime} in \mathbb{R}^{d} are called mutually unbiased if

$$
x \cdot y=\frac{1}{\sqrt{d}} \quad \forall x \in B, y \in B^{\prime}
$$

Theorem (Cameron, Seidel 73 / Calderbank, Cameron, Kantor, Seidel 97): There exist $d / 2+1$ pairwise mutually unbiased bases in \mathbb{R}^{d}, when $d=4^{k}$.

Theorem (de Caen 2000 / Jedwab, Wiebe 2015 / Greaves, Koolen, Munemasa, Szöllősi 2015): There exist $\Omega\left(d^{2}\right)$ equiangular lines in \mathbb{R}^{d} for an infinite number of d.

Remark: These constructions all have an angle of $\Theta\left(\frac{1}{\sqrt{d}}\right) \rightarrow 0$.
Question: What if the angle is fixed, i.e. doesn't go to zero with d ?

Construction of $2 d-2$ lines with $\alpha=1 / 3$

Construction of $2 d-2$ lines with $\alpha=1 / 3$

Definition: For any vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$, the Gramian matrix A is defined by $A_{i, j}=x_{i} \cdot x_{j}$.

Construction of $2 d-2$ lines with $\alpha=1 / 3$

Definition: For any vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$, the Gramian matrix A is defined by $A_{i, j}=x_{i} \cdot x_{j}$.

It is $n \times n$, symmetric, positive semidefinite and has rank at most d.

Construction of $2 d-2$ lines with $\alpha=1 / 3$

Definition: For any vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$, the Gramian matrix A is defined by $A_{i, j}=x_{i} \cdot x_{j}$.

It is $n \times n$, symmetric, positive semidefinite and has rank at most d.

Actually, these conditions are also sufficient, so...

Construction of $2 d-2$ lines with $\alpha=1 / 3$

Definition: For any vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$, the Gramian matrix A is defined by $A_{i, j}=x_{i} \cdot x_{j}$.

It is $n \times n$, symmetric, positive semidefinite and has rank at most d.

Actually, these conditions are also sufficient, so...

$$
2 d-2\left(\begin{array}{cc}
\begin{array}{|cc|}
\hline 1 & -1 / 3 \\
-1 / 3 & 1 \\
\hline
\end{array} & 1 / 3 \\
& \ddots \\
\hline \begin{array}{cc}
1 / 3 & -1 / 3 \\
-1 / 3 & 1 \\
\hline
\end{array}
\end{array}\right)
$$

Construction of $2 d-2$ lines with $\alpha=1 / 3$

Definition: For any vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$, the Gramian matrix A is defined by $A_{i, j}=x_{i} \cdot x_{j}$.

It is $n \times n$, symmetric, positive semidefinite and has rank at most d.

Actually, these conditions are also sufficient, so...
$\left.\begin{array}{c|cc}\begin{array}{c}\text { eigenvalue } \\ \frac{2}{3}(d-1)\end{array} & \begin{array}{c}\text { multiplicity } \\ 3\end{array} & 1 \\ 4 / 3 & d-1 & 2 d-2\left(\begin{array}{cc}\begin{array}{|cc|}\hline 1 & -1 / 3 \\ -1 / 3 & 1 \\ \hline\end{array} & \\ 0 & \\ 0 & d-2\end{array}\right. \\ & & \\ & & \begin{array}{|cc}1 / 3 & -1 / 3 \\ -1 / 3 & 1 \\ \hline\end{array}\end{array}\right)$

Theorem (Balla, Dräxler, Keevash, Sudakov): For any fixed α and d sufficiently large, the number of equiangular lines in \mathbb{R}^{d} with angle α is at most $(2+o(1)) d$.

Theorem (Balla, Dräxler, Keevash, Sudakov): For any fixed α and d sufficiently large, the number of equiangular lines in \mathbb{R}^{d} with angle α is at most $(2+o(1)) d$.

Definition: Call the edge $\left\{x_{i}, x_{j}\right\}$ red if $x_{i} \cdot x_{j}=+\alpha$ and call it blue if $x_{i} \cdot x_{j}=-\alpha$. So we get a red-blue edge colored complete graph G on n vertices.

Theorem (Balla, Dräxler, Keevash, Sudakov): For any fixed α and d sufficiently large, the number of equiangular lines in \mathbb{R}^{d} with angle α is at most $(2+o(1)) d$.

Definition: Call the edge $\left\{x_{i}, x_{j}\right\}$ red if $x_{i} \cdot x_{j}=+\alpha$ and call it blue if $x_{i} \cdot x_{j}=-\alpha$. So we get a red-blue edge colored complete graph G on n vertices.

Lemma 1: For $\beta>0$, if $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ are unit vectors with $x_{i} \cdot x_{j} \leq-\beta$, then $n \leq 1 / \beta+1$.

Theorem (Balla, Dräxler, Keevash, Sudakov): For any fixed α and d sufficiently large, the number of equiangular lines in \mathbb{R}^{d} with angle α is at most $(2+o(1)) d$.

Definition: Call the edge $\left\{x_{i}, x_{j}\right\}$ red if $x_{i} \cdot x_{j}=+\alpha$ and call it blue if $x_{i} \cdot x_{j}=-\alpha$. So we get a red-blue edge colored complete graph G on n vertices.

Lemma 1: For $\beta>0$, if $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ are unit vectors with $x_{i} \cdot x_{j} \leq-\beta$, then $n \leq 1 / \beta+1$.
Proof: $0 \leq\left\|\sum_{i=1}^{n} x_{i}\right\|^{2} \leq n-n(n-1) \beta$.

Theorem (Balla, Dräxler, Keevash, Sudakov): For any fixed α and d sufficiently large, the number of equiangular lines in \mathbb{R}^{d} with angle α is at most $(2+o(1)) d$.

Definition: Call the edge $\left\{x_{i}, x_{j}\right\}$ red if $x_{i} \cdot x_{j}=+\alpha$ and call it blue if $x_{i} \cdot x_{j}=-\alpha$. So we get a red-blue edge colored complete graph G on n vertices.

Lemma 1: For $\beta>0$, if $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ are unit vectors with $x_{i} \cdot x_{j} \leq-\beta$, then $n \leq 1 / \beta+1$.
Proof: $0 \leq\left\|\sum_{i=1}^{n} x_{i}\right\|^{2} \leq n-n(n-1) \beta$.
So our graph has no blue clique of size larger than $1 / \alpha+1$.

Theorem (Balla, Dräxler, Keevash, Sudakov): For any fixed α and d sufficiently large, the number of equiangular lines in \mathbb{R}^{d} with angle α is at most $(2+o(1)) d$.

Definition: Call the edge $\left\{x_{i}, x_{j}\right\}$ red if $x_{i} \cdot x_{j}=+\alpha$ and call it blue if $x_{i} \cdot x_{j}=-\alpha$. So we get a red-blue edge colored complete graph G on n vertices.

Lemma 1: For $\beta>0$, if $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ are unit vectors with $x_{i} \cdot x_{j} \leq-\beta$, then $n \leq 1 / \beta+1$.
Proof: $0 \leq\left\|\sum_{i=1}^{n} x_{i}\right\|^{2} \leq n-n(n-1) \beta$.
So our graph has no blue clique of size larger than $1 / \alpha+1$.
Thus by Ramsey's theorem it has a large red clique Y. Note that we can take $|Y| \rightarrow \infty$ as slowly as we need.

Strategy: Try to bound the remaining vertices based on how they connect to Y.

Strategy: Try to bound the remaining vertices based on how they connect to Y.

Definition: For any $T \subseteq Y$, define S_{T} to be those $x \in G \backslash Y$ such that $\{x, y\}$ is red for all $y \in T$, and blue for all $y \in Y \backslash T$.

Strategy: Try to bound the remaining vertices based on how they connect to Y.

Definition: For any $T \subseteq Y$, define S_{T} to be those $x \in G \backslash Y$ such that $\{x, y\}$ is red for all $y \in T$, and blue for all $y \in Y \backslash T$.

If $x \in G \backslash Y$ has more blue than red edges to Y, then negate x.

Strategy: Try to bound the remaining vertices based on how they connect to Y.

Definition: For any $T \subseteq Y$, define S_{T} to be those $x \in G \backslash Y$ such that $\{x, y\}$ is red for all $y \in T$, and blue for all $y \in Y \backslash T$.

If $x \in G \backslash Y$ has more blue than red edges to Y, then negate x.
The edge colors flip so $-x$ has more red than blue edges to Y.

Strategy: Try to bound the remaining vertices based on how they connect to Y.

Definition: For any $T \subseteq Y$, define S_{T} to be those $x \in G \backslash Y$ such that $\{x, y\}$ is red for all $y \in T$, and blue for all $y \in Y \backslash T$.

If $x \in G \backslash Y$ has more blue than red edges to Y, then negate x.
The edge colors flip so $-x$ has more red than blue edges to Y.

This makes $S_{T}=\emptyset$ for all $|T|<|Y| / 2$. Otherwise we have $|T| \geq|Y| / 2 \rightarrow \infty$.

Orthogonal Projection

Lemma 2: If T is a red clique with $|T| \rightarrow \infty$ and X, z are such that all edges from T to $X \cup\{z\}$ are red and all edges from z to X are blue, then
$|X| \leq \frac{1}{\beta^{2}}+o(1)$ where $\beta:=\frac{2 \alpha}{1-\alpha}$.

Orthogonal Projection

Lemma 2: If T is a red clique with $|T| \rightarrow \infty$ and X, z are such that all edges from T to $X \cup\{z\}$ are red and all edges from z to X are blue, then
$|X| \leq \frac{1}{\beta^{2}}+o(1)$ where $\beta:=\frac{2 \alpha}{1-\alpha}$

Proof: Project X onto the orthogonal complement of the span of $T \cup\{z\}$ and normalize.

Orthogonal Projection

Lemma 2: If T is a red clique with $|T| \rightarrow \infty$ and X, z are such that all edges from T to $X \cup\{z\}$ are red and all edges from z to X are blue, then
$|X| \leq \frac{1}{\beta^{2}}+o(1)$ where $\beta:=\frac{2 \alpha}{1-\alpha}$.

Proof: Project X onto the orthogonal complement of the span of $T \cup\{z\}$ and normalize.
Then all inner products become at most $\frac{-\beta^{2}}{1-\beta^{2}}+o(1)$

Orthogonal Projection

Lemma 2: If T is a red clique with $|T| \rightarrow \infty$ and X, z are such that all edges from T to $X \cup\{z\}$ are red and all edges from z to X are blue, then

$$
|X| \leq \frac{1}{\beta^{2}}+o(1) \text { where } \beta:=\frac{2 \alpha}{1-\alpha}
$$

Proof: Project X onto the orthogonal complement of the span of $T \cup\{z\}$ and normalize.
Then all inner products become at most $\frac{-\beta^{2}}{1-\beta^{2}}+o(1)$, so by
Lemma 1

$$
|X| \leq \frac{1-\beta^{2}}{\beta^{2}}+o(1)+1=\frac{1}{\beta^{2}}+o(1)
$$

Suppose $|Y| / 2 \leq|T|<|Y|$.

Suppose $|Y| / 2 \leq|T|<|Y|$.
Choose some $z \in Y \backslash T$, and apply Lemma 2 to T, S_{T}, z, to conclude that $\left|S_{T}\right| \leq 1 / \beta^{2}+o(1)$.

Suppose $|Y| / 2 \leq|T|<|Y|$.
Choose some $z \in Y \backslash T$, and apply Lemma 2 to T, S_{T}, z, to conclude that $\left|S_{T}\right| \leq 1 / \beta^{2}+o(1)$.
Thus we have that
$\sum_{|T|<Y}\left|S_{T}\right| \leq 2^{|Y|}\left(1 / \beta^{2}+o(1)\right)$
 which we can make $o(d)$, by having $|Y| \rightarrow \infty$ slowly enough.

Suppose $|Y| / 2 \leq|T|<|Y|$.
Choose some $z \in Y \backslash T$, and apply Lemma 2 to T, S_{T}, z, to conclude that $\left|S_{T}\right| \leq 1 / \beta^{2}+o(1)$.
Thus we have that
$\sum_{|T|<Y}\left|S_{T}\right| \leq 2^{|Y|}\left(1 / \beta^{2}+o(1)\right)$
 which we can make $o(d)$, by having $|Y| \rightarrow \infty$ slowly enough.

So it remains to bound S_{Y}.

Suppose $|Y| / 2 \leq|T|<|Y|$.
Choose some $z \in Y \backslash T$, and apply Lemma 2 to T, S_{T}, z, to conclude that $\left|S_{T}\right| \leq 1 / \beta^{2}+o(1)$.
Thus we have that
$\sum_{|T|<Y}\left|S_{T}\right| \leq 2^{|Y|}\left(1 / \beta^{2}+o(1)\right)$
 which we can make $o(d)$, by having $|Y| \rightarrow \infty$ slowly enough.

So it remains to bound S_{Y}.
For any $x \in S_{Y}$, if we apply Lemma 2 to Y, x and the blue neighborhood of x, we see that the blue degree of x is at most $1 / \beta^{2}+o(1)$.

Now project S_{Y} onto the orthogonal complement of Y.

Now project S_{Y} onto the orthogonal complement of Y. Then for any red edge, the inner product becomes $\varepsilon=o(1)$ and for any blue edge it becomes $-\beta+o(1)$.

Now project S_{Y} onto the orthogonal complement of Y. Then for any red edge, the inner product becomes $\varepsilon=o(1)$ and for any blue edge it becomes $-\beta+o(1)$.
So the Gramian A of these vectors looks like

$$
\left(\begin{array}{cccc}
1 & & & \varepsilon,-\beta+o(1) \\
& 1 & \ddots & \\
\varepsilon,-\beta+o(1) & \ddots & \\
& & & 1
\end{array}\right)
$$

Now project S_{Y} onto the orthogonal complement of Y. Then for any red edge, the inner product becomes $\varepsilon=o(1)$ and for any blue edge it becomes $-\beta+o(1)$.

So the Gramian A of these vectors looks like

$$
\left(\begin{array}{cccc}
1 & & & \varepsilon+o(1) \\
& 1 & \ddots,-\beta+o(1) \\
\varepsilon,-\beta+o(1) & \ddots & \\
& & & 1
\end{array}\right) \begin{gathered}
\text { rank at most } d \\
\text { dimension } m=\left|S_{Y}\right|
\end{gathered}
$$

Now project S_{Y} onto the orthogonal complement of Y. Then for any red edge, the inner product becomes $\varepsilon=o(1)$ and for any blue edge it becomes $-\beta+o(1)$.

So the Gramian A of these vectors looks like

Every row has at most
$1 / \beta^{2}+o(1)$ entries
that are $-\beta+o(1)$.$\left(\begin{array}{ccccc}1 & & & & \varepsilon,-\beta+o(1) \\ & 1 & \ddots & \\ \varepsilon,-\beta+o(1) & \ddots & \\ & & & 1\end{array}\right) \begin{gathered}\text { rank at most } d \\ \end{gathered}$

Now project S_{Y} onto the orthogonal complement of Y. Then for any red edge, the inner product becomes $\varepsilon=o(1)$ and for any blue edge it becomes $-\beta+o(1)$.

So the Gramian A of these vectors looks like

Every row has at most
$1 / \beta^{2}+o(1)$ entries
that are $-\beta+o(1)$.$\left(\begin{array}{cccc}1 & & & \\ & 1 & \varepsilon,-\beta+o(1) \\ & 1 & \ddots & \\ \varepsilon,-\beta+o(1) & & \\ & & & 1\end{array}\right) \begin{gathered}\text { rank at most } d \\ \text { dimension } m=\left|S_{Y}\right|\end{gathered}$
Thus if J is the all 1 matrix, then $M=A-\varepsilon J$ looks like

$$
\left(\begin{array}{cccc}
1-o(1) & & & \\
& 1-o(1) & 0,-\beta+o(1) \\
0,-\beta+o(1) & \ddots & \\
& & & 1-o(1)
\end{array}\right)
$$

Now project S_{Y} onto the orthogonal complement of Y. Then for any red edge, the inner product becomes $\varepsilon=o(1)$ and for any blue edge it becomes $-\beta+o(1)$.

So the Gramian A of these vectors looks like

Every row has at most
$1 / \beta^{2}+o(1)$ entries
that are $-\beta+o(1)$.$\left(\begin{array}{cccc}1 & & & \\ & 1 & \varepsilon,-\beta+o(1) \\ & 1 & \ddots & \\ \varepsilon,-\beta+o(1) & & \\ & & & 1\end{array}\right) \begin{gathered}\text { rank at most } d \\ \text { dimension } m=\left|S_{Y}\right|\end{gathered}$
Thus if J is the all 1 matrix, then $M=A-\varepsilon J$ looks like

$$
\left(\begin{array}{cccc}
1-o(1) & & & \\
& 1-o(1) & 0,-\beta+o(1) \\
0,-\beta+o(1) & \ddots & \\
& & & 1-o(1)
\end{array}\right)
$$

and the rank r of M is at most $\operatorname{rk}(A)+\operatorname{rk}(-\epsilon J) \leq d+1$.

Lemma 3: For any matrix M with rank r and real eigenvalues

$$
\operatorname{tr}(M)^{2} \leq r \operatorname{tr}\left(M^{2}\right)
$$

Lemma 3: For any matrix M with rank r and real eigenvalues

$$
\operatorname{tr}(M)^{2} \leq r \operatorname{tr}\left(M^{2}\right)
$$

Proof: $\operatorname{tr}(M)=\sum_{i=1}^{r} \lambda_{i}$ and $\operatorname{tr}\left(M^{2}\right)=\sum_{i=1}^{r} \lambda_{i}^{2}$ where $\lambda_{1}, \ldots, \lambda_{r}$ are the nonzero eigenvalues of M, so the result follows by Cauchy-Schwarz.

Lemma 3: For any matrix M with rank r and real eigenvalues

$$
\operatorname{tr}(M)^{2} \leq r \operatorname{tr}\left(M^{2}\right)
$$

Proof: $\operatorname{tr}(M)=\sum_{i=1}^{r} \lambda_{i}$ and $\operatorname{tr}\left(M^{2}\right)=\sum_{i=1}^{r} \lambda_{i}^{2}$ where $\lambda_{1}, \ldots, \lambda_{r}$ are the nonzero eigenvalues of M, so the result follows by Cauchy-Schwarz.

Now we compute

$$
\operatorname{tr}(M)=m(1-o(1))
$$

Lemma 3: For any matrix M with rank r and real eigenvalues

$$
\operatorname{tr}(M)^{2} \leq r \operatorname{tr}\left(M^{2}\right)
$$

Proof: $\operatorname{tr}(M)=\sum_{i=1}^{r} \lambda_{i}$ and $\operatorname{tr}\left(M^{2}\right)=\sum_{i=1}^{r} \lambda_{i}^{2}$ where $\lambda_{1}, \ldots, \lambda_{r}$ are the nonzero eigenvalues of M, so the result follows by Cauchy-Schwarz.

Now we compute

$$
\begin{aligned}
& \operatorname{tr}(M)=m(1-o(1)) \\
& \operatorname{tr}\left(M^{2}\right)=\sum_{i, j}\left(M_{i, j}\right)^{2}
\end{aligned}
$$

Lemma 3: For any matrix M with rank r and real eigenvalues

$$
\operatorname{tr}(M)^{2} \leq r \operatorname{tr}\left(M^{2}\right)
$$

Proof: $\operatorname{tr}(M)=\sum_{i=1}^{r} \lambda_{i}$ and $\operatorname{tr}\left(M^{2}\right)=\sum_{i=1}^{r} \lambda_{i}^{2}$ where $\lambda_{1}, \ldots, \lambda_{r}$ are the nonzero eigenvalues of M, so the result follows by Cauchy-Schwarz.

Now we compute

$$
\begin{aligned}
& \operatorname{tr}(M)=m(1-o(1)) \\
& \operatorname{tr}\left(M^{2}\right)=\sum_{i, j}\left(M_{i, j}\right)^{2} \leq m\left(1+\left(\frac{1}{\beta^{2}}+o(1)\right)(-\beta+o(1))^{2}\right)
\end{aligned}
$$

Lemma 3: For any matrix M with rank r and real eigenvalues

$$
\operatorname{tr}(M)^{2} \leq r \operatorname{tr}\left(M^{2}\right)
$$

Proof: $\operatorname{tr}(M)=\sum_{i=1}^{r} \lambda_{i}$ and $\operatorname{tr}\left(M^{2}\right)=\sum_{i=1}^{r} \lambda_{i}^{2}$ where $\lambda_{1}, \ldots, \lambda_{r}$ are the nonzero eigenvalues of M, so the result follows by Cauchy-Schwarz.

Now we compute

$$
\begin{aligned}
& \operatorname{tr}(M)=m(1-o(1)) \\
& \begin{aligned}
\operatorname{tr}\left(M^{2}\right)=\sum_{i, j}\left(M_{i, j}\right)^{2} & \leq m\left(1+\left(\frac{1}{\beta^{2}}+o(1)\right)(-\beta+o(1))^{2}\right) \\
& =m(2+o(1))
\end{aligned}
\end{aligned}
$$

Lemma 3: For any matrix M with rank r and real eigenvalues

$$
\operatorname{tr}(M)^{2} \leq r \operatorname{tr}\left(M^{2}\right)
$$

Proof: $\operatorname{tr}(M)=\sum_{i=1}^{r} \lambda_{i}$ and $\operatorname{tr}\left(M^{2}\right)=\sum_{i=1}^{r} \lambda_{i}^{2}$ where $\lambda_{1}, \ldots, \lambda_{r}$ are the nonzero eigenvalues of M, so the result follows by Cauchy-Schwarz.

Now we compute

$$
\begin{aligned}
& \operatorname{tr}(M)=m(1-o(1)) \\
& \begin{aligned}
\operatorname{tr}\left(M^{2}\right)=\sum_{i, j}\left(M_{i, j}\right)^{2} & \leq m\left(1+\left(\frac{1}{\beta^{2}}+o(1)\right)(-\beta+o(1))^{2}\right) \\
& =m(2+o(1))
\end{aligned}
\end{aligned}
$$

Thus Lemma 3 gives $(m(1-o(1)))^{2} \leq r m(2+o(1))$

Lemma 3: For any matrix M with rank r and real eigenvalues

$$
\operatorname{tr}(M)^{2} \leq r \operatorname{tr}\left(M^{2}\right)
$$

Proof: $\operatorname{tr}(M)=\sum_{i=1}^{r} \lambda_{i}$ and $\operatorname{tr}\left(M^{2}\right)=\sum_{i=1}^{r} \lambda_{i}^{2}$ where $\lambda_{1}, \ldots, \lambda_{r}$ are the nonzero eigenvalues of M, so the result follows by Cauchy-Schwarz.

Now we compute

$$
\begin{aligned}
& \operatorname{tr}(M)=m(1-o(1)) \\
& \begin{aligned}
\operatorname{tr}\left(M^{2}\right)=\sum_{i, j}\left(M_{i, j}\right)^{2} & \leq m\left(1+\left(\frac{1}{\beta^{2}}+o(1)\right)(-\beta+o(1))^{2}\right) \\
& =m(2+o(1))
\end{aligned}
\end{aligned}
$$

Thus Lemma 3 gives $(m(1-o(1)))^{2} \leq r m(2+o(1))$

$$
m \stackrel{\Downarrow}{\leq} r(2+o(1))
$$

Lemma 3: For any matrix M with rank r and real eigenvalues

$$
\operatorname{tr}(M)^{2} \leq r \operatorname{tr}\left(M^{2}\right)
$$

Proof: $\operatorname{tr}(M)=\sum_{i=1}^{r} \lambda_{i}$ and $\operatorname{tr}\left(M^{2}\right)=\sum_{i=1}^{r} \lambda_{i}^{2}$ where $\lambda_{1}, \ldots, \lambda_{r}$ are the nonzero eigenvalues of M, so the result follows by Cauchy-Schwarz.

Now we compute

$$
\begin{aligned}
& \operatorname{tr}(M)=m(1-o(1)) \\
& \begin{aligned}
\operatorname{tr}\left(M^{2}\right)=\sum_{i, j}\left(M_{i, j}\right)^{2} & \leq m\left(1+\left(\frac{1}{\beta^{2}}+o(1)\right)(-\beta+o(1))^{2}\right) \\
& =m(2+o(1))
\end{aligned}
\end{aligned}
$$

Thus Lemma 3 gives $(m(1-o(1)))^{2} \leq r m(2+o(1))$

$$
m \stackrel{\Downarrow}{\leq} r(2+o(1)) . \quad \begin{gathered}
\text { Theorem } \\
\text { Complete }!
\end{gathered}
$$

Open Questions

Open Questions

Conjecture: If $\alpha=\frac{1}{2 r+1}$ for integer r, then the number of equiangular lines in \mathbb{R}^{d} with angle α is at most $\left(1+\frac{1}{r}\right) d$.

Open Questions

Conjecture: If $\alpha=\frac{1}{2 r+1}$ for integer r, then the number of equiangular lines in \mathbb{R}^{d} with angle α is at most $\left(1+\frac{1}{r}\right) d$.

Question: How many equiangular lines in \mathbb{R}^{d} can we have for $\alpha=\Theta\left(1 / d^{\gamma}\right)$ where $0<\gamma<1 / 2$?

Open Questions

Conjecture: If $\alpha=\frac{1}{2 r+1}$ for integer r, then the number of equiangular lines in \mathbb{R}^{d} with angle α is at most $\left(1+\frac{1}{r}\right) d$.

Question: How many equiangular lines in \mathbb{R}^{d} can we have for $\alpha=\Theta\left(1 / d^{\gamma}\right)$ where $0<\gamma<1 / 2$?

Done!

