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Definition: A set of lines passing through the origin is called 
equiangular, if every pair of lines make the same angle.

Question: What is the maximum number of equiangular lines 
in      ? Rd

Earliest work: 
Haantjes, Seidel 47-48 
Blumenthal 49  
Van Lint, Seidel 66 
Lemmens, Seidel 73 
… 

For d = 2, 3 Greeks?

Not an example!



Examples
d = 2:

3 lines
In general, d-simplex  
gives d+1 lines:

d = 3:

6 lines

Triangle

Icosahedron d = 7:

28 lines
Take all 28 

permutations of the 
vector 

(3,3,-1,-1,-1,-1,-1,-1). 



Consider the matrices                            . They live in the           
         -dimensional space of symmetric matrices and have the 
same non-negative inner product:

Theorem (Gerzon 73): The number of equiangular lines in       is 
at most           .
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Question: Can we have            lines in      ?⌦(d2) Rd



Theorem (Bukh ’15): For fixed     and sufficiently large    , there 
are at most                  equiangular lines.

Remark: These constructions all have an angle of

Theorem (de Caen ’00 / Jedwab, Wiebe ’15 / Greaves, et al. ’15):  
There exist            equiangular lines in      .⌦(d2) Rd

Question (Lemmens, Seidel 73): 
What if the angle is fixed and     tends to infinity?d
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        if     is  
        otherwise.  

Theorem (B., Dräxler, Keevash, Sudakov): For fixed     and 
sufficiently large    , the maximum number of equiangular lines 
in       is       
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Construction of            lines with             

Definition: For any vectors                             , the Gram matrix      
    is defined by                         . It is            , symmetric, 
positive semidefinite and has rank at most    .
A

Ai,j = xi · xj n⇥ n
d

x1, . . . , xn 2 Rd

↵ = 1/32d� 2

Actually, these conditions are also sufficient, so…



Thus by Ramsey’s theorem it has a large red clique    . Note that 
we can take                  as slowly as we need.

Theorem (B., Dräxler, Keevash, Sudakov): For any fixed     and      
sufficiently large, the number of equiangular lines in       with 
angle     is at most                      .
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Lemma 1: For            , if                              are unit vectors with 
                      , then                       .

x1, . . . , xn 2 Rd

xi · xj  �� n  1/� + 1
� > 0

Proof: ⇤

Definition: Call the edge               red if                        and call 
it blue if                       . So we get a red-blue edge colored 
complete graph      on     vertices.

{xi, xj} xi · xj = +↵
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So our graph has no blue clique of size larger than              .1/↵+ 1
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Then all inner products become at most                     

Lemma 2: If     is a red clique with                  and          are 
such that all edges from      to                are red and all edges 
from     to      are blue, then 

                               where                      .
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                                                                                       , so by 
Lemma 1



Strategy: Show that most of the remaining vertices connect to  
    entirely via red edges.

Definition: For any             , 
define        to be those                  
such that            is red for all            
          , and blue for all                .
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Choose some                ,  and apply 
Lemma 2 to               , to conclude 
that

Thus we have that  

which we can make         , by having                    
                 slowly enough.

For any             , if we apply Lemma 2 
to         and the blue neighborhood 
of    , we see that the blue degree of        
   is at most                     .
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Then for any red edge, the inner product becomes                 
and for any blue edge it becomes                    .

Now project        onto the orthogonal complement of    .SY Y
" = o(1)
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Thus if     is the all 1 matrix, then                         looks like M = A� "JJ
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Every row has at most 
                     entries 
that are 
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     rank at most  
dimension m = |SY |
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and the rank     of       is at most rk(A) + rk(�✏J)  d+ 1.r M



Thus Lemma 3 gives                                                        ,

Lemma 3 (Schnirelmann 30 / Bellman 60 / Alon ’09… ):  
For any symmetric matrix      with rank   ,                                         M r

tr(M) = m(1� o(1))

Theorem 
Complete!

tr(M)2  r tr(M2).

Now we compute

= m(2 + o(1)).
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