## EQUIANGULAR LINES AND SPHERICAL CODES

By: Igor Balla

Joint work with: Felix Dräxler, Peter Keevash, Benny Sudakov

**Definition:** A set of lines passing through the origin is called **equiangular**, if every pair of lines make the same angle.

Not an example!

Question: What is the maximum number of equiangular lines in  $\mathbb{R}^d$ ?

For d = 2, 3 Greeks?

Earliest work: Haantjes, Seidel 47-48 Blumenthal 49 Van Lint, Seidel 66 Lemmens, Seidel 73



Theorem (Gerzon 73): The number of equiangular lines in  $\mathbb{R}^d$  is at most  $\binom{d+1}{2}$ .

**Proof:** Let  $x_1, \ldots, x_n$  be unit vectors along the given lines. Then  $x_i \cdot x_j = \pm \alpha$  for some  $0 \le \alpha < 1$ .

Consider the matrices  $x_1 x_1^T, \ldots, x_n x_n^T$ . They live in the  $\binom{d+1}{2}$ -dimensional space of symmetric matrices and have the same non-negative inner product:

$$(x_i x_i^{\mathsf{T}}) \cdot (x_j x_j^{\mathsf{T}}) = \operatorname{tr}(x_i x_i^{\mathsf{T}} x_j x_j^{\mathsf{T}}) = (x_i^{\mathsf{T}} x_j)^2 = \begin{cases} 1 & i = j \\ \alpha^2 & i \neq j. \end{cases}$$

Hence they are linearly independent.

**Question:** Can we have  $\Omega(d^2)$  lines in  $\mathbb{R}^d$ ?

Theorem (de Caen '00 / Jedwab, Wiebe '15 / Greaves, et al. '15): There exist  $\Omega(d^2)$  equiangular lines in  $\mathbb{R}^d$ .

**Remark:** These constructions all have an angle of  $\Theta\left(\frac{1}{\sqrt{d}}\right) \to 0$ .

**Question** (Lemmens, Seidel 73):

What if the angle is fixed and d tends to infinity?

**Theorem** (Bukh '15): For fixed  $\alpha$  and sufficiently large d, there are at most  $2^{O(\alpha^{-2})}d$  equiangular lines.

Theorem (B., Dräxler, Keevash, Sudakov): For fixed  $\alpha$  and sufficiently large d, the maximum number of equiangular lines in  $\mathbb{R}^d$  is  $\begin{cases} = 2d - 2 \text{ if } \alpha \text{ is } 1/3 \\ \leq 1.93d \text{ otherwise.} \end{cases}$ 

## Construction of 2d-2 lines with $\alpha = 1/3$

**Definition:** For any vectors  $x_1, \ldots, x_n \in \mathbb{R}^d$ , the Gram matrix A is defined by  $A_{i,j} = x_i \cdot x_j$ . It is  $n \times n$ , symmetric, positive semidefinite and has rank at most d.

Actually, these conditions are also sufficient, so...



Theorem (B., Dräxler, Keevash, Sudakov): For any fixed  $\alpha$  and d sufficiently large, the number of equiangular lines in  $\mathbb{R}^d$  with angle  $\alpha$  is at most (2 + o(1))d.

**Definition:** Call the edge  $\{x_i, x_j\}$  red if  $x_i \cdot x_j = +\alpha$  and call it blue if  $x_i \cdot x_j = -\alpha$ . So we get a red-blue edge colored complete graph G on n vertices.

Lemma 1: For  $\beta > 0$ , if  $x_1, \ldots, x_n \in \mathbb{R}^d$  are unit vectors with  $x_i \cdot x_j \leq -\beta$ , then  $n \leq 1/\beta + 1$ .

**Proof:**  $0 \le \|\sum_{i=1}^n x_i\|^2 \le n - n(n-1)\beta.$ 

So our graph has no blue clique of size larger than  $1/\alpha + 1$ .

Thus by Ramsey's theorem it has a large red clique Y. Note that we can take  $|Y| \to \infty$  as slowly as we need.

## **Orthogonal projection**

Lemma 2: If T is a red clique with  $|T| \to \infty$  and X, z are such that all edges from T to  $X \cup \{z\}$  are red and all edges from z to X are blue, then



**Proof:** Project X onto the orthogonal complement of the span of  $T \cup \{z\}$  and normalize. Then all inner products become at most  $\frac{-\beta^2}{1-\beta^2} + o(1)$ , so by Lemma 1  $|X| \leq \frac{1-\beta^2}{\beta^2} + o(1) + 1 = \frac{1}{\beta^2} + o(1)$ . Strategy: Show that most of the remaining vertices connect to Y entirely via red edges.  $Y = S_T$ 

**Definition:** For any  $T \subseteq Y$ , define  $S_T$  to be those  $x \in G \setminus Y$ such that  $\{x, y\}$  is red for all  $y \in T$ , and blue for all  $y \in Y \setminus T$ .



Choose some  $z \in Y \setminus T$ , and apply Lemma 2 to  $T, S_T, z$ , to conclude that  $|S_T| \leq 1/\beta^2 + o(1)$ .

Thus we have that  $\sum_{|T| < Y} |S_T| \le 2^{|Y|} (1/\beta^2 + o(1))$ which we can make o(d), by having  $|Y| \to \infty$  slowly enough.

So it remains to bound  $S_Y$ .

For any  $x \in S_Y$ , if we apply Lemma 2 to Y, x and the blue neighborhood of x, we see that the blue degree of x is at most  $1/\beta^2 + o(1)$ .



Now project  $S_Y$  onto the orthogonal complement of Y. Then for any red edge, the inner product becomes  $\varepsilon = o(1)$ and for any blue edge it becomes  $-\beta + o(1)$ .

So the Gram matrix A of these vectors looks like

 $\begin{array}{l} \text{Every row has at most} \\ 1/\beta^2 + o(1) \text{ entries} \\ \text{that are } -\beta + o(1). \end{array} \begin{pmatrix} 1 \\ \varepsilon, -\beta + o(1) \\ \varepsilon, -\beta + o(1) \\ 1 \end{pmatrix} \text{ rank at most } d \\ \text{dimension } m = |S_Y| \\ 1 \end{pmatrix}$ 

Thus if J is the all 1 matrix, then  $M = A - \varepsilon J$  looks like  $(\begin{array}{ccc} 1-o(1) & 0, -\beta+o(1) \\ & 1-o(1) & 0, -\beta+o(1) \\ 0, -\beta+o(1) & \bullet \end{array}$ 

$$0, -\beta + o(1)$$

and the rank r of M is at most  $rk(A) + rk(-\epsilon J) \le d + 1$ .

Lemma 3 (Schnirelmann 30 / Bellman 60 / Alon '09...): For any symmetric matrix M with rank r,  $\operatorname{tr}(M)^2 \leq r \operatorname{tr}(M^2)$ .

Now we compute

tr(M) = m(1 - o(1)) $tr(M^2) = \sum_{i,j} (M_{i,j})^2 \le m \left( 1 + \left( \frac{1}{\beta^2} + o(1) \right) (-\beta + o(1))^2 \right)$ = m(2 + o(1)).

Thus Lemma 3 gives  $(m(1 - o(1)))^2 \leq rm(2 + o(1))$ , which implies  $m \leq r(2 + o(1))$ .

> Theorem Complete!