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Definition: A set of lines passing through the origin is called
equiangular, if every pair of lines make the same angle.

Not an example!

Question: What is the maximum number of equiangular lines
in R%?
Earliest work:
Haantjes, Seidel 47-48
For d =2, 3 Greeks? Blumenthal 49

Van Lint, Seidel 66
Lemmens, Seidel 73




Examples

Triangle In general, d-simplex
gives d+1 lines:

d=3: lcosahedron d=7: Take all 28
permutations of the

6 lines e 28 lines

vector
(3,3,-1,-1,-1,-1,-1,-1).




Theorem (Gerzon 73): The number of equiangular lines in R%is

at most (“17).

Proof: Let Z1,...,Zxs be unit vectors along the given lines.
Then Z; - *; = T forsome 0 < o < 1.

Consider the matrices z1x],...,x,xT. They live in the

(d‘gl)-dimensional space of symmetric matrices and have the

same non-negative inner product:

J a1,

SRS
<xixz>-<xjx}>:tr<xixzw>=<a:2:cj>2={ EEUER

Hence they are linearly independent.

Question: Can we have Q(d2) lines in R%?




Theorem (de Caen '00 / Jedwab, Wiebe ‘15 / Greaves, et al. '15):
There exist £(d?) equiangular lines in R%.

Remark: These constructions all have an angle of © (\/LE) — 0.

Question (Lemmens, Seidel 73):
What if the angle is fixed and d tends to infinity?

Theorem (Bukh '15): For fixed o and sufficiently large d, there
are at most 20(@™°)d equiangular lines.

Theorem (B., Draxler, Keevash, Sudakov): For fixed a and
sufficiently large d, the maximum number of equiangular lines

3 A—v
in R%is —2d—2 if ais1/3
< 1.93d otherwise.




Construction of 2d — 2 lines with a =1/3

Definition: For any vectors x1,...,T, € R? the Gram matrix
Ais defined by A; ; =z, z;. Itis n X n, symmetric,
positive semidefinite and has rank at most d.

Actually, these conditions are also sufficient, so...

2d—2

eigenvalue | multiplicity
2(d — 1) 1
4/3 di= 1
0 d— 2




Theorem (B., Draxler, Keevash, Sudakov): For any fixed « and d
sufficiently large, the number of equiangular lines in R% with
angle ais at most (2+ o(1))d.

Definition: Call the edge {z;, x;}red if z; - x; = +a and call
it blue if ; - £; = —. So we get a red-blue edge colored
complete graph G on n vertices.

Lemma 1: For 0 > 0,if z1,...,2, € R% are unit vectors with
Tii~% = thenn < 1/6+ 1

Proof: 0 < ||>.._, z;||? <n—n(n—1)5

So our graph has no blue clique of size larger than 1/a + 1.

Thus by Ramsey’s theorem it has a large red clique Y. Note that
we can take |Y| — oo as slowly as we need.




Orthogonal projection

Lemma 2: If T'is a red clique with |T'| — o0 and X, z are
such that all edges from 1" to X U {2z} are red and all edges
from z to X are blue, then

20y

o(1) where 3 := T

Z

Proof: Project X onto the orthogonal complement of the span
of T'U {z}and normalize.
Then all inner products become at most —




Strategy: Show that most of the remaining vertices connect to
Y entirely via red edges. Y St

Definition: Forany 1" C Y,
define St to be those x € G\Y
such that {z, y} is red for all

y € 1, and blue for all ¥ € Y\T. v




Choose some 2z € Y\T', and apply
Lemma 2 to T', 5T, z, to conclude

that |S7| < 1/8% + o(1).

Thus we have that

> i<y 18| < 2¥1(1/8% + 0(1))
which we can make o(d), by having
Y| — oo slowly enough.

So it remains to bound Sy.

For any x € Sy, if we apply Lemma 2
to Y, x and the blue neighborhood
of x, we see that the blue degree of
 is at most 1/3% + o(1).




Now project Sy onto the orthogonal complement of Y.
Then for any red edge, the inner product becomes € = o(1)

and for any blue edge it becomes —( + o(1) .

So the Gram matrix A of these vectors looks like

Every row has at most &, =0 + o(1) rank at most d

; 1
1/8% + o(1) entries B dimension m = |Sy|

that are —8 + o(1). e, —B +o(1) i

Thus if J is the all 1 matrix, then M = A — ¢J looks like

1 —o(l
/ ( ) 1_0(1) 0, -5+ o(1) \

Ov _6 = 0(1)

\ 1-o(1) /
and the rank r of M is at most rk(A) + rk(—eJ) < d + 1.




Lemma 3 (Schnirelmann 30 / Bellman 60 / Alon ‘09... ):
For any symmetric matrix M with rank r, tr(M)* < rtr(M?).

Now we compute

tr(M) = m(1 — 0(1

Rl e et

2 e b))

Thus Lemma 3 gives (m(1 — 0(1)))? < rm(2
which implies m < 7(2 4 o(1)).

Theorem
Complete!




