

EQUIANGULAR LINES

 AND SPHERICAL CODESBy: Igor Balla
Joint work with: Felix Dräxler, Peter Keevash, Benny Sudakov

Definition: A set of lines passing through the origin is called equiangular, if every pair of lines make the same angle.

Not an example!

Question: What is the maximum number of equiangular lines in \mathbb{R}^{d} ?

Earliest work:
Haantjes, Seidel 47-48
For $d=2,3$ Greeks?
Blumenthal 49
Van Lint, Seidel 66
Lemmens, Seidel 73

Examples

Theorem (Gerzon 73): The number of equiangular lines in \mathbb{R}^{d} is at most $\binom{d+1}{2}$.

Proof: Let x_{1}, \ldots, x_{n} be unit vectors along the given lines.
Then $x_{i} \cdot x_{j}= \pm \alpha$ for some $0 \leq \alpha<1$.
Consider the matrices $x_{1} x_{1}^{\top}, \ldots, x_{n} x_{n}^{\top}$. They live in the $\binom{d+1}{2}$-dimensional space of symmetric matrices and have the same non-negative inner product:
$\left(x_{i} x_{i}^{\top}\right) \cdot\left(x_{j} x_{j}^{\top}\right)=\operatorname{tr}\left(x_{i} x_{i}^{\top} x_{j} x_{j}^{\top}\right)=\left(x_{i}^{\top} x_{j}\right)^{2}= \begin{cases}1 & i=j \\ \alpha^{2} & i \neq j .\end{cases}$
Hence they are linearly independent.
Question: Can we have $\Omega\left(d^{2}\right)$ lines in \mathbb{R}^{d} ?

Theorem (de Caen '00 / Jedwab, Wiebe '15 / Greaves, et al. '15): There exist $\Omega\left(d^{2}\right)$ equiangular lines in \mathbb{R}^{d}.
Remark: These constructions all have an angle of $\Theta\left(\frac{1}{\sqrt{d}}\right) \rightarrow 0$.
Question (Lemmens, Seidel 73):
What if the angle is fixed and d tends to infinity?

Theorem (Bukh '15): For fixed α and sufficiently large d, there are at most $2^{O\left(\alpha^{-2}\right)} d$ equiangular lines.

Theorem (B., Dräxler, Keevash, Sudakov): For fixed α and sufficiently large d, the maximum number of equiangular lines in \mathbb{R}^{d} is

$$
\left\{\begin{array}{l}
=2 d-2 \text { if } \alpha \text { is } 1 / 3 \\
\leq 1.93 d \text { otherwise. }
\end{array}\right.
$$

Construction of $2 d-2$ lines with $\alpha=1 / 3$

Definition: For any vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$, the Gram matrix A is defined by $A_{i, j}=x_{i} \cdot x_{j}$. It is $n \times n$, symmetric, positive semidefinite and has rank at most d.

Actually, these conditions are also sufficient, so...

$$
\left.2 d-2\left(\begin{array}{cc|}
\begin{array}{|cc|}
\hline 1 & -1 / 3 \\
-1 / 3 & 1 \\
\hline
\end{array} & 1 / 3 \\
& \ddots
\end{array}\right) \begin{array}{rc|c}
\text { eigenvalue } & \text { multiplicity } \\
\frac{2}{3}(d-1) & 1 \\
1 / 3 & \begin{array}{|cc|}
\hline 1 & -1 / 3 \\
-1 / 3 & 1 \\
\hline
\end{array}
\end{array}\right) \quad \begin{gathered}
d / 3 \\
d-1 \\
d-2
\end{gathered}
$$

Theorem (B., Dräxler, Keevash, Sudakov): For any fixed α and d sufficiently large, the number of equiangular lines in \mathbb{R}^{d} with angle α is at most $(2+o(1)) d$.

Definition: Call the edge $\left\{x_{i}, x_{j}\right\}$ red if $x_{i} \cdot x_{j}=+\alpha$ and call it blue if $x_{i} \cdot x_{j}=-\alpha$. So we get a red-blue edge colored complete graph G on n vertices.

Lemma 1: For $\beta>0$, if $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ are unit vectors with $x_{i} \cdot x_{j} \leq-\beta$, then $n \leq 1 / \beta+1$.
Proof: $0 \leq\left\|\sum_{i=1}^{n} x_{i}\right\|^{2} \leq n-n(n-1) \beta$.
So our graph has no blue clique of size larger than $1 / \alpha+1$.
Thus by Ramsey's theorem it has a large red clique Y. Note that we can take $|Y| \rightarrow \infty$ as slowly as we need.

Orthogonal projection

Lemma 2: If T is a red clique with $|T| \rightarrow \infty$ and X, z are such that all edges from T to $X \cup\{z\}$ are red and all edges from z to X are blue, then

$$
|X| \leq \frac{1}{\beta^{2}}+o(1) \text { where } \beta:=\frac{2 \alpha}{1-\alpha}
$$

Proof: Project X onto the orthogonal complement of the span of $T \cup\{z\}$ and normalize.
Then all inner products become at most $\frac{-\beta^{2}}{1-\beta^{2}}+o(1)$, so by
Lemma 1

$$
|X| \leq \frac{1-\beta^{2}}{\beta^{2}}+o(1)+1=\frac{1}{\beta^{2}}+o(1)
$$

Strategy: Show that most of the remaining vertices connect to Y entirely via red edges.

Definition: For any $T \subseteq Y$, define S_{T} to be those $x \in G \backslash Y$ such that $\{x, y\}$ is red for all $y \in T$, and blue for all $y \in Y \backslash T$.

Choose some $z \in Y \backslash T$, and apply Lemma 2 to T, S_{T}, z, to conclude that $\left|S_{T}\right| \leq 1 / \beta^{2}+o(1)$.

Thus we have that
$\sum_{|T|<Y}\left|S_{T}\right| \leq 2^{|Y|}\left(1 / \beta^{2}+o(1)\right)$ which we can make $o(d)$, by having
 $|Y| \rightarrow \infty$ slowly enough.

So it remains to bound S_{Y}.
For any $x \in S_{Y}$, if we apply Lemma 2 to Y, x and the blue neighborhood of x, we see that the blue degree of x is at most $1 / \beta^{2}+o(1)$.

Now project S_{Y} onto the orthogonal complement of Y. Then for any red edge, the inner product becomes $\varepsilon=o(1)$ and for any blue edge it becomes $-\beta+o(1)$.

So the Gram matrix A of these vectors looks like

Every row has at most
$1 / \beta^{2}+o(1)$ entries
that are $-\beta+o(1)$.$\left(\begin{array}{ccccc}1 & & & \\ & 1 & & \varepsilon,-\beta+o(1) \\ & & \ddots,-\beta+o(1) & \ddots & \\ & & & 1\end{array}\right) \begin{gathered}\text { rank at most } d \\ \\ \end{gathered}$
Thus if J is the all 1 matrix, then $M=A-\varepsilon J$ looks like

$$
\left(\begin{array}{ccc}
1-o(1) & & \\
& 1-o(1) & 0,-\beta+o(1) \\
0,-\beta+o(1) & \ddots & \\
& & \\
& & 1-o(1)
\end{array}\right)
$$

and the rank r of M is at most $\operatorname{rk}(A)+\operatorname{rk}(-\epsilon J) \leq d+1$.

Lemma 3 (Schnirelmann 30 / Bellman 60 / Alon '09...):
For any symmetric matrix M with rank $r, \operatorname{tr}(M)^{2} \leq r \operatorname{tr}\left(M^{2}\right)$.

Now we compute

$$
\begin{aligned}
& \operatorname{tr}(M)=m(1-o(1)) \\
& \begin{aligned}
\operatorname{tr}\left(M^{2}\right)=\sum_{i, j}\left(M_{i, j}\right)^{2} & \leq m\left(1+\left(\frac{1}{\beta^{2}}+o(1)\right)(-\beta+o(1))^{2}\right) \\
& =m(2+o(1))
\end{aligned}
\end{aligned}
$$

Thus Lemma 3 gives $(m(1-o(1)))^{2} \leq r m(2+o(1))$, which implies $m \leq r(2+o(1))$.

Theorem
Complete!

