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Theorem (Grimmett and McDiarmid 75): For     fixed, the 
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                                    with high probability.
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For finite fields     with                    , this result was already 
proven recently by Golovnev, Regev, and Weinstein.
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Proof: Let      be the graph where       is an edge if and only if                      
                . Note that it has                                        edges.
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On the other hand, any independent set in      corresponds to 
a full rank submatrix of      , and so must have size at most               
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Lemma (Golovnev, Regev, Weinstein 17): Every rank    matrix  
                   has a “nice”              principal submatrix of rank     
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Done!
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