THE MINRANK OF RANDOM GRAPHS OVER ARBITRARY FIELDS

By: Igor Balla

Joint work with: Noga Alon, Lior Gishboliner, Adva Mond,

Frank Mousset

Definition: An orthogonal representation of G in \mathbb{R}^k is an assignment of a nonzero vector $v_i \in \mathbb{R}^k$ to each vertex i such that $\langle v_i, v_j \rangle = 0$ when $ij \notin E(G)$.

Definition: An orthogonal representation of G in \mathbb{R}^k is an assignment of a nonzero vector $v_i \in \mathbb{R}^k$ to each vertex i such that $\langle v_i, v_j \rangle = 0$ when $ij \notin E(G)$.

Question (Knuth 94): What is the minimum k such that the random graph G(n, p) for fixed p has an orthogonal representation in \mathbb{R}^k with high probability?

Definition: An orthogonal representation of G in \mathbb{R}^k is an assignment of a nonzero vector $v_i \in \mathbb{R}^k$ to each vertex i such that $\langle v_i, v_j \rangle = 0$ when $ij \notin E(G)$.

Question (Knuth 94): What is the minimum k such that the random graph G(n, p) for fixed p has an orthogonal representation in \mathbb{R}^k with high probability?

Note that any graph G has an orthogonal representation in $\mathbb{R}^{\chi(G)}$.

Definition: An orthogonal representation of G in \mathbb{R}^k is an assignment of a nonzero vector $v_i \in \mathbb{R}^k$ to each vertex i such that $\langle v_i, v_j \rangle = 0$ when $ij \notin E(G)$.

Question (Knuth 94): What is the minimum k such that the random graph G(n, p) for fixed p has an orthogonal representation in \mathbb{R}^k with high probability?

Note that any graph G has an orthogonal representation in $\mathbb{R}^{\chi(G)}$.

Theorem (Grimmett and McDiarmid 75): For p fixed, the random graph $G \sim G(n, p)$ has chromatic number $\chi(G) = \Theta(n/\log n)$ with high probability.

Definition: The minrank mr(G) of a graph G over a field \mathbb{F} is the minimum rank rk(M) of a matrix $M \in \mathbb{F}^{n \times n}$ that represents G.

Definition: The minrank mr(G) of a graph G over a field \mathbb{F} is the minimum rank rk(M) of a matrix $M \in \mathbb{F}^{n \times n}$ that represents G.

If G has an orthogonal representation in \mathbb{R}^k , then the Gram matrix of all pairwise inner products represents G and has rank k.

Definition: The minrank mr(G) of a graph G over a field \mathbb{F} is the minimum rank rk(M) of a matrix $M \in \mathbb{F}^{n \times n}$ that represents G.

If G has an orthogonal representation in \mathbb{R}^k , then the Gram matrix of all pairwise inner products represents G and has rank k.

Theorem (Alon, B., Gishboliner, Mond, Mousset): For any field \mathbb{F} and any $1/n \le p \le 1$, the random graph $G \sim G(n, p)$ satisfies with high probability that

$$\operatorname{mr}(G) \ge \frac{n \log(1/p)}{80 \log n}.$$

Definition: The minrank mr(G) of a graph G over a field \mathbb{F} is the minimum rank rk(M) of a matrix $M \in \mathbb{F}^{n \times n}$ that represents G.

If G has an orthogonal representation in \mathbb{R}^k , then the Gram matrix of all pairwise inner products represents G and has rank k.

Theorem (Alon, B., Gishboliner, Mond, Mousset): For any field \mathbb{F} and any $1/n \le p \le 1$, the random graph $G \sim G(n, p)$ satisfies with high probability that

$$\operatorname{mr}(G) \ge \frac{n \log(1/p)}{80 \log n}.$$

For finite fields \mathbb{F} with $|\mathbb{F}| \leq n^{O(1)}$, this result was already proven recently by Golovnev, Regev, and Weinstein.

A Naive Proof				

For simplicity, lets assume that all matrices are symmetric, p=1/2, and the field $\mathbb F$ is finite and of constant size.

For simplicity, lets assume that all matrices are symmetric, p=1/2, and the field $\mathbb F$ is finite and of constant size.

Definition: Let $s(M) = |\{(i, j) : M_{i,j} \neq 0\}|$ denote the sparsity of M.

For simplicity, lets assume that all matrices are symmetric, p=1/2, and the field $\mathbb F$ is finite and of constant size.

Definition: Let $s(M) = |\{(i, j) : M_{i,j} \neq 0\}|$ denote the sparsity of M.

By taking a union bound over all matrices of rank at most k, we have

 $P[mr(G) \le k] \le \sum_{M \in \mathbb{F}^{n \times n} : rk(M) \le k} P[M \text{ represents } G]$

For simplicity, lets assume that all matrices are symmetric, p=1/2, and the field $\mathbb F$ is finite and of constant size.

Definition: Let $s(M) = |\{(i, j) : M_{i,j} \neq 0\}|$ denote the sparsity of M.

By taking a union bound over all matrices of rank at most k, we have

$$P[\operatorname{mr}(G) \le k] \le \sum_{\substack{M \in \mathbb{F}^{n \times n} : \operatorname{rk}(M) \le k}} P[M \text{ represents } G]$$
$$= \sum_{\substack{M \in \mathbb{F}^{n \times n} : \operatorname{rk}(M) \le k}} (1/2)^{(s(M)-n)/2}$$

A Naive Proof				

Lemma: If $M \in \mathbb{F}^{n \times n}$ is a matrix with $M_{i,i} \neq 0 \quad \forall i$, then $s(M) \geq \frac{n^2}{rk(M)}.$

Proof: Let G be the graph where ij is an edge if and only if $M_{i,j} \neq 0$. Note that it has e(G) = (s(M) - n)/2 edges.

Lemma: If $M \in \mathbb{F}^{n \times n}$ is a matrix with $M_{i,i} \neq 0 \quad \forall i$, then $\mathbf{s}(M) \geq \frac{n^2}{\mathrm{rk}(M)}.$

Proof: Let G be the graph where ij is an edge if and only if $M_{i,j} \neq 0$. Note that it has e(G) = (s(M) - n)/2 edges.

By Turán's theorem, G has an independent set of size

$$\frac{n}{1+2e(G)/n} = \frac{n^2}{\mathrm{s}(M)}.$$

Lemma: If $M \in \mathbb{F}^{n \times n}$ is a matrix with $M_{i,i} \neq 0 \quad \forall i$, then $\mathbf{s}(M) \geq \frac{n^2}{\mathrm{rk}(M)}.$

Proof: Let G be the graph where ij is an edge if and only if $M_{i,j} \neq 0$. Note that it has e(G) = (s(M) - n)/2 edges.

By Turán's theorem, G has an independent set of size $\frac{n}{1+2e(G)/n} = \frac{n^2}{s(M)}.$

On the other hand, any independent set in G corresponds to a full rank submatrix of M, and so must have size at most rk(M).

A Naive Proof				

Note that any matrix $M \in \mathbb{F}^{n \times n}$ with $\operatorname{rk}(M) \leq k$ can be written as M = UV, where $U \in \mathbb{F}^{n \times k}$ and $V \in \mathbb{F}^{k \times n}$.

Note that any matrix $M \in \mathbb{F}^{n \times n}$ with $\operatorname{rk}(M) \leq k$ can be written as M = UV, where $U \in \mathbb{F}^{n \times k}$ and $V \in \mathbb{F}^{k \times n}$.

Thus the number of matrices with rank $\leq k$ is at most $|\mathbb{F}|^{2nk}$.

Note that any matrix $M \in \mathbb{F}^{n \times n}$ with $rk(M) \leq k$ can be written as M = UV, where $U \in \mathbb{F}^{n \times k}$ and $V \in \mathbb{F}^{k \times n}$.

Thus the number of matrices with rank $\leq k$ is at most $|\mathbb{F}|^{2nk}$.

Using the previous lemma, we conclude

 $P[mr(G) \le k] \le \qquad \sum (1/2)^{(s(M)-n)/2}$

 $M \in \mathbb{F}^{n \times n} : \operatorname{rk}(M) \leq k$

 $\leq |\mathbb{F}|^{2nk} (1/2)^{(n^2/k-n)/2}$

Note that any matrix $M \in \mathbb{F}^{n \times n}$ with $rk(M) \leq k$ can be written as M = UV, where $U \in \mathbb{F}^{n \times k}$ and $V \in \mathbb{F}^{k \times n}$.

Thus the number of matrices with rank $\leq k$ is at most $|\mathbb{F}|^{2nk}$.

Using the previous lemma, we conclude

$$P[mr(G) \le k] \le \qquad \sum (1/2)^{(s(M)-n)/2}$$

 $M \in \mathbb{F}^{n \times n} : \operatorname{rk}(M) \leq k$

$$\leq |\mathbb{F}|^{2nk} (1/2)^{(n^2/k-n)/2}$$

$$= o(1)$$

if we take $k = \Theta(\sqrt{n})$.

A Better Proof				

Observation: Any rank k matrix is uniquely determined by specifying k linearly independent rows, k linearly independent columns, and the indices of those rows and columns.

Observation: Any rank k matrix is uniquely determined by specifying k linearly independent rows, k linearly independent columns, and the indices of those rows and columns.

If $M \in \mathbb{F}^{n \times n}$ is a matrix of rank k with sparsity s which is sufficiently "nice", then each row and column will have $\approx s/n$ nonzero entries and so the k linearly independent rows/ columns determining M will each have $\approx ks/n$ nonzero entries.

Observation: Any rank k matrix is uniquely determined by specifying k linearly independent rows, k linearly independent columns, and the indices of those rows and columns.

If $M \in \mathbb{F}^{n \times n}$ is a matrix of rank k with sparsity s which is sufficiently "nice", then each row and column will have $\approx s/n$ nonzero entries and so the k linearly independent rows/ columns determining M will each have $\approx ks/n$ nonzero entries.

Lets bound the number of "nice" matrices with rank at most k and sparsity s.

A Better Proof				

For the rows, there are $\binom{n}{k}$ choices for the indices, $\binom{kn}{ks/n}$ choices of where the ks/n nonzero entries will be, and $|\mathbb{F}|^{ks/n}$ choices for what those nonzero entries will be.

For the rows, there are $\binom{n}{k}$ choices for the indices, $\binom{kn}{ks/n}$ choices of where the ks/n nonzero entries will be, and $|\mathbb{F}|^{ks/n}$ choices for what those nonzero entries will be.

The same holds for the columns, and so we conclude that the number of "nice" matrices with rank at most k and sparsity sis at most

For the rows, there are $\binom{n}{k}$ choices for the indices, $\binom{kn}{ks/n}$ choices of where the ks/n nonzero entries will be,

and $|\mathbb{F}|^{ks/n}$ choices for what those nonzero entries will be.

The same holds for the columns, and so we conclude that the number of "nice" matrices with rank at most k and sparsity sis at most

 $\left(\binom{n}{k}\binom{kn}{ks/n}|\mathbb{F}|^{ks/n}\right)^2 \leq \left(n^k(kn)^{ks/n}|\mathbb{F}|^{ks/n}\right)^2$

A Better Proof

For the rows, there are $\binom{n}{k}$ choices for the indices, $\binom{kn}{ks/n}$ choices of where the ks/n nonzero entries will be,

and $|\mathbb{F}|^{ks/n}$ choices for what those nonzero entries will be.

The same holds for the columns, and so we conclude that the number of "nice" matrices with rank at most k and sparsity sis at most

 $\left(\binom{n}{k} \binom{kn}{ks/n} |\mathbb{F}|^{ks/n} \right)^2 \leq \left(n^k (kn)^{ks/n} |\mathbb{F}|^{ks/n} \right)^2 \\ \leq \left(n^{ks/n} (n^2)^{ks/n} |\mathbb{F}|^{ks/n} \right)^2$

A Better Proof

For the rows, there are $\binom{n}{k}$ choices for the indices, $\binom{kn}{ks/n}$ choices of where the ks/n nonzero entries will be,

and $|\mathbb{F}|^{ks/n}$ choices for what those nonzero entries will be.

The same holds for the columns, and so we conclude that the number of "nice" matrices with rank at most k and sparsity sis at most

 $\left(\binom{n}{k} \binom{kn}{ks/n} |\mathbb{F}|^{ks/n} \right)^2 \leq \left(n^k (kn)^{ks/n} |\mathbb{F}|^{ks/n} \right)^2 \\ \leq \left(n^{ks/n} (n^2)^{ks/n} |\mathbb{F}|^{ks/n} \right)^2$ $= \left(n^3 |\mathbb{F}|\right)^{2ks/n}.$

A Better Proof	

Definition: The zero-pattern of a vector or a matrix is obtained by replacing all nonzero entries with a \star .

Definition: The zero-pattern of a vector or a matrix is obtained by replacing all nonzero entries with a \star .

Observation: The probability that M represents G only depends on the zero-pattern of M.

Definition: The zero-pattern of a vector or a matrix is obtained by replacing all nonzero entries with a \star .

Observation: The probability that M represents G only depends on the zero-pattern of M.

Thus if we let Q_s denote the set of all zero-patterns of matrices $M \in \mathbb{F}^{n \times n}$ with $rk(M) \leq k$ and s(M) = s, then

Definition: The zero-pattern of a vector or a matrix is obtained by replacing all nonzero entries with a \star .

Observation: The probability that M represents G only depends on the zero-pattern of M.

 n^2

Thus if we let Q_s denote the set of all zero-patterns of matrices $M \in \mathbb{F}^{n \times n}$ with $rk(M) \leq k$ and s(M) = s, then

 $\Pr[\operatorname{mr}(G) \le k] \le \sum_{s=n^2/k} \sum_{Z \in Q_s} \Pr\left[\exists M : \overset{Z \text{ is the zero-pattern of } M}{M \text{ represents } G}\right]$

Definition: The zero-pattern of a vector or a matrix is obtained by replacing all nonzero entries with a \star .

Observation: The probability that M represents G only depends on the zero-pattern of M.

Thus if we let Q_s denote the set of all zero-patterns of matrices $M \in \mathbb{F}^{n \times n}$ with $rk(M) \leq k$ and s(M) = s, then

 $P[\operatorname{mr}(G) \le k] \le \sum_{s=n^2/k}^{n^2} \sum_{Z \in Q_s} P\left[\exists M : Z \text{ is the zero-pattern of } M\right]$ $\le \sum_{s=n^2/k}^{n^2} \sum_{Z \in Q_s} (1/2)^{(s-n)/2}$

A Better Proof Not Depending on $\mathbb F$ Theorem (Rónyai, Babai, Ganapathy 01): If (f_1, \ldots, f_m) is a vector of polynomials over a field $\mathbb F$ with degree $\leq d$ in Nvariables, then the number zero-patterns of this vector as the variables range over all possible elements is at most $\binom{md+N}{N}$. Let M be a "nice" $n \times n$ matrix of rank k. Then there are k linearly independent rows and columns that uniquely determine it. These rows and columns have pprox 2ks/n nonzero entries. Call these entries E.

A Better Proof Not Depending on $\mathbb F$ Theorem (Rónyai, Babai, Ganapathy 01): If (f_1, \ldots, f_m) is a vector of polynomials over a field $\mathbb F$ with degree $\leq d$ in Nvariables, then the number zero-patterns of this vector as the variables range over all possible elements is at most $\binom{md+N}{N}$. Let M be a "nice" $n \times n$ matrix of rank k. Then there are k linearly independent rows and columns that uniquely determine it. These rows and columns have pprox 2ks/n nonzero entries. Call these entries E.

Claim: Each entry of M is a polynomial of degree $\leq k + 1$ in the variables of E.

A Better Proof Not Depending on $\mathbb F$ Theorem (Rónyai, Babai, Ganapathy 01): If (f_1, \ldots, f_m) is a vector of polynomials over a field \mathbb{F} with degree $\leq d$ in N variables, then the number zero-patterns of this vector as the variables range over all possible elements is at most $\binom{md+N}{N}$. Let M be a "nice" $n \times n$ matrix of rank k. Then there are klinearly independent rows and columns that uniquely determine it. These rows and columns have pprox 2ks/n nonzero entries. Call these entries E. **Claim:** Each entry of M is a polynomial of degree $\leq k+1$ in the variables of E. Thus we have n^2 polynomials of degree $\leq k+1$ in 2ks/n $|Q_s| \le \binom{n}{k}^2 \binom{kn}{ks/n}^2 \binom{n^2(k+1) + 2ks/n}{2ks/n}.$ variables, so

A Better Proof Not Depending on \mathbb{F} $|Q_s| \leq {\binom{n}{k}}^2 {\binom{kn}{ks/n}}^2 {\binom{n^2(k+1)+2ks/n}{2ks/n}}$

A Better Proof Not Depending on $\mathbb F$ $|Q_s| \le \binom{n}{k}^2 \binom{kn}{ks/n}^2 \binom{n^2(k+1) + 2ks/n}{2ks/n}$ $\leq n^{2k} (kn)^{2ks/n} (n^2(k+1) + 2ks/n)^{2ks/n}$ $\leq n^{2ks/n} (n^2)^{2ks/n} (n^3 + 2n^2)^{2ks/n}$

A Better Proof Not Depending on $\mathbb F$ $|Q_s| \le \binom{n}{k}^2 \binom{kn}{ks/n}^2 \binom{n^2(k+1) + 2ks/n}{2ks/n}$ $\leq n^{2k} (kn)^{2ks/n} (n^2(k+1) + 2ks/n)^{2ks/n}$ $\leq n^{2ks/n} (n^2)^{2ks/n} (n^3 + 2n^2)^{2ks/n}$ $\leq (3n^6)^{2ks/n}$.

A Better Proof Not Depending on $\mathbb F$ $|Q_s| \le \binom{n}{k}^2 \binom{kn}{ks/n}^2 \binom{n^2(k+1) + 2ks/n}{2ks/n}$ $\leq n^{2k} (kn)^{2ks/n} (n^2(k+1) + 2ks/n)^{2ks/n}$ $\leq n^{2ks/n} (n^2)^{2ks/n} (n^3 + 2n^2)^{2ks/n}$ $\leq \left(3n^6\right)^{2ks/n}$ Thus $P[mr(G) \le k] \le \sum (1/2)^{(s-n)/2}$ $s=n^2/k Z \in Q_s$

A Better Proof Not Depending on $\mathbb F$ $|Q_s| \le \binom{n}{k}^2 \binom{kn}{ks/n}^2 \binom{n^2(k+1) + 2ks/n}{2ks/n}$ $\leq n^{2k} (kn)^{2ks/n} (n^2(k+1) + 2ks/n)^{2ks/n}$ $\leq n^{2ks/n} (n^2)^{2ks/n} (n^3 + 2n^2)^{2ks/n}$ $\leq \left(3n^6\right)^{2ks/n}$ Thus $P[mr(G) \le k] \le \sum (1/2)^{(s-n)/2}$ $s=n^2/k \ Z \in Q_s$ n^2 $\leq \sum (3n^6)^{2ks/n} (1/2)^{(s-n)/2}$ $s = n^2 / k$

Claim: Each entry of M is a polynomial of degree $\leq k + 1$ in the variables of E.

Claim: Each entry of M is a polynomial of degree $\leq k + 1$ in the variables of E.

Proof: Suppose the first k rows and columns of M are linearly independent, and let C be the matrix consisting of these

columns.

Claim: Each entry of M is a polynomial of degree $\leq k + 1$ in the variables of E.

Proof: Suppose the first k rows and columns of M are linearly independent, and let C be the matrix consisting of these columns.

Thus for any column v of M, there exists a vector x of length k such that Cx = v.

Claim: Each entry of M is a polynomial of degree $\leq k + 1$ in the variables of E.

Proof: Suppose the first k rows and columns of M are linearly independent, and let C be the matrix consisting of these columns.

Thus for any column v of M, there exists a vector x of length k such that Cx = v.

Now let C', v' be obtained by keeping only the first k rows of C, v respectively, so that C'x = v'.

Claim: Each entry of M is a polynomial of degree $\leq k + 1$ in the variables of E.

Proof: Suppose the first k rows and columns of M are linearly independent, and let C be the matrix consisting of these columns.

Thus for any column v of M, there exists a vector x of length k such that Cx = v.

Now let C', v' be obtained by keeping only the first k rows of C, v respectively, so that C'x = v'.

Note that all entries of C', v' lie in E.

Claim: Each entry of M is a polynomial of degree $\leq k + 1$ in the variables of E.

Proof: Suppose the first k rows and columns of M are linearly independent, and let C be the matrix consisting of these columns.

Thus for any column v of M, there exists a vector x of length k such that Cx = v.

Now let C', v' be obtained by keeping only the first k rows of C, v respectively, so that C'x = v'.

Note that all entries of C', v' lie in E.

Cramer's rule: If C'_i is the matrix obtained by replacing the *i*-th column of C' by v', then $x_i = \det(C'_i) / \det(C')$.

Correct Claim: Each entry of det(C')M is a polynomial of degree $\leq k + 1$ in the variables of E.

Proof: Suppose the first k rows and columns of M are linearly independent, and let C be the matrix consisting of these columns.

Thus for any column v of M, there exists a vector x of length k such that Cx = v.

Now let C', v' be obtained by keeping only the first k rows of C, v respectively, so that C'x = v'.

Note that all entries of C', v' lie in E.

Cramer's rule: If C'_i is the matrix obtained by replacing the *i*-th column of C' by v', then $x_i = \det(C'_i) / \det(C')$.

Concluding	Remarks	

• Note that our result applies to other problems in which one represents graphs via polynomial relations, such as unit distance graphs, or graphs of touching spheres.

• Note that our result applies to other problems in which one represents graphs via polynomial relations, such as unit distance graphs, or graphs of touching spheres.

• Nelson recently showed that the zero-pattern bound of Rónyai, Babai, and Ganapathy holds for all fields simultaneously and this can be used to show that for the random graph, the minrank over all fields is $\Theta(n/\log n)$ with high probability.

• Note that our result applies to other problems in which one represents graphs via polynomial relations, such as unit distance graphs, or graphs of touching spheres.

• Nelson recently showed that the zero-pattern bound of Rónyai, Babai, and Ganapathy holds for all fields simultaneously and this can be used to show that for the random graph, the minrank over all fields is $\Theta(n/\log n)$ with high probability.

• Haviv used the methods of Golovnev, Regev, and Weinstein to randomly construct graphs with large minrank and such that their complement does not contain a copy of some *H*.

• Note that our result applies to other problems in which one represents graphs via polynomial relations, such as unit distance graphs, or graphs of touching spheres.

• Nelson recently showed that the zero-pattern bound of Rónyai, Babai, and Ganapathy holds for all fields simultaneously and this can be used to show that for the random graph, the minrank over all fields is $\Theta(n/\log n)$ with high probability.

• Haviv used the methods of Golovnev, Regev, and Weinstein to randomly construct graphs with large minrank and such that their complement does not contain a copy of some *H*.

Done!