THE MINRANK OF RANDOM GRAPHS OVER ARBITRARY FIELDS

By: Igor Balla

Joint work with: Noga Alon, Lior Gishboliner, Adva Mond, Frank Mousset

All graphs G will have vertex set $\{1,2, \ldots, n\}$.

All graphs G will have vertex set $\{1,2, \ldots, n\}$.
Definition: An orthogonal representation of G in \mathbb{R}^{k} is an assignment of a nonzero vector $v_{i} \in \mathbb{R}^{k}$ to each vertex i such that $\left\langle v_{i}, v_{j}\right\rangle=0$ when $i j \notin E(G)$.

All graphs G will have vertex set $\{1,2, \ldots, n\}$.
Definition: An orthogonal representation of G in \mathbb{R}^{k} is an assignment of a nonzero vector $v_{i} \in \mathbb{R}^{k}$ to each vertex i such that $\left\langle v_{i}, v_{j}\right\rangle=0$ when $i j \notin E(G)$.

Question (Knuth 94): What is the minimum k such that the random graph $G(n, p)$ for fixed p has an orthogonal representation in \mathbb{R}^{k} with high probability?

All graphs G will have vertex set $\{1,2, \ldots, n\}$.
Definition: An orthogonal representation of G in \mathbb{R}^{k} is an assignment of a nonzero vector $v_{i} \in \mathbb{R}^{k}$ to each vertex i such that $\left\langle v_{i}, v_{j}\right\rangle=0$ when $i j \notin E(G)$.

Question (Knuth 94): What is the minimum k such that the random graph $G(n, p)$ for fixed p has an orthogonal representation in \mathbb{R}^{k} with high probability?

Note that any graph G has an orthogonal representation in $\mathbb{R}^{\chi(\bar{G})}$.

All graphs G will have vertex set $\{1,2, \ldots, n\}$.
Definition: An orthogonal representation of G in \mathbb{R}^{k} is an assignment of a nonzero vector $v_{i} \in \mathbb{R}^{k}$ to each vertex i such that $\left\langle v_{i}, v_{j}\right\rangle=0$ when $i j \notin E(G)$.

Question (Knuth 94): What is the minimum k such that the random graph $G(n, p)$ for fixed p has an orthogonal representation in \mathbb{R}^{k} with high probability?

Note that any graph G has an orthogonal representation in $\mathbb{R}^{\chi(\overline{\bar{G}})}$.
Theorem (Grimmett and McDiarmid 75): For p fixed, the random graph $G \sim G(n, p)$ has chromatic number $\chi(G)=\Theta(n / \log n)$ with high probability.

Definition: A matrix $M \in \mathbb{F}^{n \times n}$ represents G if $M_{i, i} \neq 0 \forall i$ and $M_{i, j}=0$ when $i j \notin E(G)$.

Definition: A matrix $M \in \mathbb{F}^{n \times n}$ represents G if $M_{i, i} \neq 0 \forall i$ and $M_{i, j}=0$ when $i j \notin E(G)$.
Definition: The minrank $\operatorname{mr}(G)$ of a graph G over a field \mathbb{F} is the minimum rank $\operatorname{rk}(M)$ of a matrix $M \in \mathbb{F}^{n \times n}$ that represents G.

Definition: A matrix $M \in \mathbb{F}^{n \times n}$ represents G if $M_{i, i} \neq 0 \forall i$ and $M_{i, j}=0$ when $i j \notin E(G)$.
Definition: The minrank $\operatorname{mr}(G)$ of a graph G over a field \mathbb{F} is the minimum rank $\operatorname{rk}(M)$ of a matrix $M \in \mathbb{F}^{n \times n}$ that represents G.
If G has an orthogonal representation in \mathbb{R}^{k}, then the Gram matrix of all pairwise inner products represents G and has rank k.

Definition: A matrix $M \in \mathbb{F}^{n \times n}$ represents G if $M_{i, i} \neq 0 \forall i$ and $M_{i, j}=0$ when $i j \notin E(G)$.
Definition: The minrank $\operatorname{mr}(G)$ of a graph G over a field \mathbb{F} is the minimum rank $\operatorname{rk}(M)$ of a matrix $M \in \mathbb{F}^{n \times n}$ that represents G.
If G has an orthogonal representation in \mathbb{R}^{k}, then the Gram matrix of all pairwise inner products represents G and has rank k.

Theorem (Alon, B., Gishboliner, Mond, Mousset): For any field \mathbb{F} and any $1 / n \leq p \leq 1$, the random graph $G \sim G(n, p)$ satisfies with high probability that

$$
\operatorname{mr}(G) \geq \frac{n \log (1 / p)}{80 \log n}
$$

Definition: A matrix $M \in \mathbb{F}^{n \times n}$ represents G if $M_{i, i} \neq 0 \forall i$ and $M_{i, j}=0$ when $i j \notin E(G)$.
Definition: The minrank $\operatorname{mr}(G)$ of a graph G over a field \mathbb{F} is the minimum rank $\operatorname{rk}(M)$ of a matrix $M \in \mathbb{F}^{n \times n}$ that represents G.
If G has an orthogonal representation in \mathbb{R}^{k}, then the Gram matrix of all pairwise inner products represents G and has rank k.

Theorem (Alon, B., Gishboliner, Mond, Mousset): For any field \mathbb{F} and any $1 / n \leq p \leq 1$, the random graph $G \sim G(n, p)$ satisfies with high probability that

$$
\operatorname{mr}(G) \geq \frac{n \log (1 / p)}{80 \log n}
$$

For finite fields \mathbb{F} with $|\mathbb{F}| \leq n^{O(1)}$, this result was already proven recently by Golovnev, Regev, and Weinstein.

A Naive Proof

A Naive Proof

For simplicity, lets assume that all matrices are symmetric, $p=1 / 2$, and the field \mathbb{F} is finite and of constant size.

A Naive Proof

For simplicity, lets assume that all matrices are symmetric, $p=1 / 2$, and the field \mathbb{F} is finite and of constant size.

Definition: Let $\mathrm{s}(M)=\left|\left\{(i, j): M_{i, j} \neq 0\right\}\right|$ denote the sparsity of M.

A Naive Proof

For simplicity, lets assume that all matrices are symmetric, $p=1 / 2$, and the field \mathbb{F} is finite and of constant size.

Definition: Let $\mathrm{s}(M)=\left|\left\{(i, j): M_{i, j} \neq 0\right\}\right|$ denote the sparsity of M.

By taking a union bound over all matrices of rank at most k, we have

$$
\mathrm{P}[\operatorname{mr}(G) \leq k] \leq \sum_{M \in \mathbb{F}^{n \times n}: \mathrm{rk}(M) \leq k} \mathrm{P}[M \text { represents } G]
$$

A Naive Proof

For simplicity, lets assume that all matrices are symmetric, $p=1 / 2$, and the field \mathbb{F} is finite and of constant size.

Definition: Let $\mathrm{s}(M)=\left|\left\{(i, j): M_{i, j} \neq 0\right\}\right|$ denote the sparsity of M.

By taking a union bound over all matrices of rank at most k, we have

$$
\begin{aligned}
\mathrm{P}[\operatorname{mr}(G) \leq k] & \leq \sum_{M \in \mathbb{F}^{n \times n}: \mathrm{rk}(M) \leq k} \mathrm{P}[M \text { represents } G] \\
& =\sum_{M \in \mathbb{F}^{n \times n}: \mathrm{rk}(M) \leq k}(1 / 2)^{(s(M)-n) / 2}
\end{aligned}
$$

A Naive Proof

A Naive Proof

Lemma: If $M \in \mathbb{F}^{n \times n}$ is a matrix with $M_{i, i} \neq 0 \forall i$, then

$$
\mathrm{s}(M) \geq \frac{n^{2}}{\operatorname{rk}(M)}
$$

A Naive Proof

Lemma: If $M \in \mathbb{F}^{n \times n}$ is a matrix with $M_{i, i} \neq 0 \forall i$, then

$$
\mathrm{s}(M) \geq \frac{n^{2}}{\operatorname{rk}(M)}
$$

Proof: Let G be the graph where $i j$ is an edge if and only if $M_{i, j} \neq 0$. Note that it has $e(G)=(\mathrm{s}(M)-n) / 2$ edges.

A Naive Proof

Lemma: If $M \in \mathbb{F}^{n \times n}$ is a matrix with $M_{i, i} \neq 0 \forall i$, then

$$
\mathrm{s}(M) \geq \frac{n^{2}}{\operatorname{rk}(M)}
$$

Proof: Let G be the graph where $i j$ is an edge if and only if $M_{i, j} \neq 0$. Note that it has $e(G)=(\mathrm{s}(M)-n) / 2$ edges.

By Turán's theorem, G has an independent set of size

$$
\frac{n}{1+2 e(G) / n}=\frac{n^{2}}{\mathrm{~s}(M)}
$$

A Naive Proof

Lemma: If $M \in \mathbb{F}^{n \times n}$ is a matrix with $M_{i, i} \neq 0 \forall i$, then

$$
\mathrm{s}(M) \geq \frac{n^{2}}{\operatorname{rk}(M)}
$$

Proof: Let G be the graph where $i j$ is an edge if and only if $M_{i, j} \neq 0$. Note that it has $e(G)=(\mathrm{s}(M)-n) / 2$ edges.

By Turán's theorem, G has an independent set of size

$$
\frac{n}{1+2 e(G) / n}=\frac{n^{2}}{\mathrm{~s}(M)}
$$

On the other hand, any independent set in G corresponds to a full rank submatrix of M, and so must have size at most rk(M).

A Naive Proof

A Naive Proof

Note that any matrix $M \in \mathbb{F}^{n \times n}$ with $\operatorname{rk}(M) \leq k$ can be written as $M=U V$, where $U \in \mathbb{F}^{n \times k}$ and $V \in \mathbb{F}^{k \times n}$.

A Naive Proof

Note that any matrix $M \in \mathbb{F}^{n \times n}$ with $\operatorname{rk}(M) \leq k$ can be written as $M=U V$, where $U \in \mathbb{F}^{n \times k}$ and $V \in \mathbb{F}^{k \times n}$.

Thus the number of matrices with rank $\leq k$ is at most $|\mathbb{F}|^{2 n k}$.

A Naive Proof

Note that any matrix $M \in \mathbb{F}^{n \times n}$ with $\operatorname{rk}(M) \leq k$ can be written as $M=U V$, where $U \in \mathbb{F}^{n \times k}$ and $V \in \mathbb{F}^{k \times n}$.

Thus the number of matrices with rank $\leq k$ is at most $|\mathbb{F}|^{2 n k}$.
Using the previous lemma, we conclude

$$
\begin{aligned}
\mathrm{P}[\operatorname{mr}(G) \leq k] & \leq \sum_{M \in \mathbb{F}^{n \times n}: \mathrm{rk}(M) \leq k}(1 / 2)^{(\mathrm{s}(M)-n) / 2} \\
& \leq|\mathbb{F}|^{2 n k}(1 / 2)^{\left(n^{2} / k-n\right) / 2}
\end{aligned}
$$

A Naive Proof

Note that any matrix $M \in \mathbb{F}^{n \times n}$ with $\operatorname{rk}(M) \leq k$ can be written as $M=U V$, where $U \in \mathbb{F}^{n \times k}$ and $V \in \mathbb{F}^{k \times n}$.

Thus the number of matrices with rank $\leq k$ is at most $|\mathbb{F}|^{2 n k}$.
Using the previous lemma, we conclude

$$
\begin{aligned}
\mathrm{P}[\operatorname{mr}(G) \leq k] & \leq \sum_{M \in \mathbb{F}^{n \times n}: \mathrm{rk}(M) \leq k}(1 / 2)^{(\mathrm{s}(M)-n) / 2} \\
& \leq|\mathbb{F}|^{2 n k}(1 / 2)^{\left(n^{2} / k-n\right) / 2} \\
& =o(1)
\end{aligned}
$$

if we take $k=\Theta(\sqrt{n})$.

A Better Proof

A Better Proof

Observation: Any rank k matrix is uniquely determined by specifying k linearly independent rows, k linearly independent columns, and the indices of those rows and columns.

A Better Proof

Observation: Any rank k matrix is uniquely determined by specifying k linearly independent rows, k linearly independent columns, and the indices of those rows and columns.

If $M \in \mathbb{F}^{n \times n}$ is a matrix of rank k with sparsity s which is sufficiently "nice", then each row and column will have $\approx s / n$ nonzero entries and so the k linearly independent rows/ columns determining M will each have $\approx k s / n$ nonzero entries.

A Better Proof

Observation: Any rank k matrix is uniquely determined by specifying k linearly independent rows, k linearly independent columns, and the indices of those rows and columns.

If $M \in \mathbb{F}^{n \times n}$ is a matrix of rank k with sparsity s which is sufficiently "nice", then each row and column will have $\approx s / n$ nonzero entries and so the k linearly independent rows/ columns determining M will each have $\approx k s / n$ nonzero entries.

Lets bound the number of "nice" matrices with rank at most k and sparsity s.

A Better Proof

A Better Proof

For the rows, there are $\binom{n}{k}$ choices for the indices,

A Better Proof

For the rows, there are $\binom{n}{k}$ choices for the indices,
$\binom{k n}{k s / n}$ choices of where the $k s / n$ nonzero entries will be,

A Better Proof

For the rows, there are $\binom{n}{k}$ choices for the indices, $\binom{k n}{k s / n}$ choices of where the $k s / n$ nonzero entries will be, and $|\mathbb{F}|^{k s / n}$ choices for what those nonzero entries will be.

A Better Proof

For the rows, there are $\binom{n}{k}$ choices for the indices, $\binom{k n}{k s / n}$ choices of where the $k s / n$ nonzero entries will be, and $|\mathbb{F}|^{k s / n}$ choices for what those nonzero entries will be.

The same holds for the columns, and so we conclude that the number of "nice" matrices with rank at most k and sparsity s is at most

A Better Proof

For the rows, there are $\binom{n}{k}$ choices for the indices, $\binom{k n}{k s / n}$ choices of where the $k s / n$ nonzero entries will be, and $|\mathbb{F}|^{k s / n}$ choices for what those nonzero entries will be.

The same holds for the columns, and so we conclude that the number of "nice" matrices with rank at most k and sparsity s is at most

$$
\left(\binom{n}{k}\binom{k n}{k s / n}|\mathbb{F}|^{k s / n}\right)^{2} \leq\left(n^{k}(k n)^{k s / n}|\mathbb{F}|^{k s / n}\right)^{2}
$$

A Better Proof

For the rows, there are $\binom{n}{k}$ choices for the indices, $\binom{k n}{k s / n}$ choices of where the $k s / n$ nonzero entries will be, and $|\mathbb{F}|^{k s / n}$ choices for what those nonzero entries will be.

The same holds for the columns, and so we conclude that the number of "nice" matrices with rank at most k and sparsity s is at most

$$
\begin{aligned}
\left(\binom{n}{k}\binom{k n}{k s / n}|\mathbb{F}|^{k s / n}\right)^{2} & \leq\left(n^{k}(k n)^{k s / n}|\mathbb{F}|^{k s / n}\right)^{2} \\
& \leq\left(n^{k s / n}\left(n^{2}\right)^{k s / n}|\mathbb{F}|^{k s / n}\right)^{2}
\end{aligned}
$$

A Better Proof

For the rows, there are $\binom{n}{k}$ choices for the indices, $\binom{k n}{k s / n}$ choices of where the $k s / n$ nonzero entries will be, and $|\mathbb{F}|^{k s / n}$ choices for what those nonzero entries will be.

The same holds for the columns, and so we conclude that the number of "nice" matrices with rank at most k and sparsity s is at most

$$
\begin{aligned}
\left(\binom{n}{k}\binom{k n}{k s / n}|\mathbb{F}|^{k s / n}\right)^{2} & \leq\left(n^{k}(k n)^{k s / n}|\mathbb{F}|^{k s / n}\right)^{2} \\
& \leq\left(n^{k s / n}\left(n^{2}\right)^{k s / n}|\mathbb{F}|^{k s / n}\right)^{2} \\
& =\left(n^{3}|\mathbb{F}|\right)^{2 k s / n}
\end{aligned}
$$

A Better Proof

A Better Proof

If all matrices were "nice", we could do a union bound over them to get

$$
\mathrm{P}[\operatorname{mr}(G) \leq k] \leq \sum_{s=n^{2} / k}^{n^{2}} \sum_{\substack{M \in \mathbb{F}^{n \times n} \\ \operatorname{rk}(M) \leq k \\ \mathrm{~s}(M)=s}} \mathrm{P}[M \text { represents } G]
$$

A Better Proof

If all matrices were "nice", we could do a union bound over them to get

$$
\begin{aligned}
\mathrm{P}[\operatorname{mr}(G) \leq k] & \leq \sum_{\substack{s=n^{2} / k}}^{n^{2}} \sum_{\substack{M \in \mathbb{F}^{n \times n} \\
\text { rk }(M) \leq k \\
\mathrm{~s}(M)=s}} \mathrm{P}[M \text { represents } G] \\
& \leq \sum^{n^{2}}\left(n^{3}|\mathbb{F}|\right)^{2 k s / n}(1 / 2)^{(s-n) / 2}
\end{aligned}
$$

A Better Proof

If all matrices were "nice", we could do a union bound over them to get

$$
\begin{aligned}
\mathrm{P}[\operatorname{mr}(G) \leq k] & \leq \sum_{s=n^{2} / k}^{n^{2}} \sum_{\substack{M \in \mathbb{F}^{n \times n} \\
\mathrm{rk}(M) \leq k \\
\mathrm{~s}(M)=s}} \mathrm{P}[M \text { represents } G] \\
& \leq \sum_{s=n^{2} / k}^{n^{2}}\left(n^{3}|\mathbb{F}|\right)^{2 k s / n}(1 / 2)^{(s-n) / 2} \\
& =o(1)
\end{aligned}
$$

if we take $k=\Theta(n / \log n)$.

A Better Proof

If all matrices were "nice", we could do a union bound over them to get

$$
\begin{aligned}
& \leq \sum_{s=n^{2} / k}^{n^{2}}\left(n^{3}|\mathbb{F}|\right)^{2 k s / n}(1 / 2)^{(s-n) / 2} \\
& =o(1)
\end{aligned}
$$

if we take $k=\Theta(n / \log n)$.
Lemma (Golovnev, Regev, Weinstein 17): Every rank k matrix $M \in \mathbb{F}^{n \times n}$ has a "nice" $n^{\prime} \times n^{\prime}$ principal submatrix of rank k^{\prime} such that $k^{\prime} / n^{\prime} \leq k / n$.

A Better Proof Not Depending on \mathbb{F}

A Better Proof Not Depending on \mathbb{F}

Definition: The zero-pattern of a vector or a matrix is obtained by replacing all nonzero entries with a \star.

A Better Proof Not Depending on \mathbb{F}

Definition: The zero-pattern of a vector or a matrix is obtained by replacing all nonzero entries with a \star.

Observation: The probability that M represents G only depends on the zero-pattern of M.

A Better Proof Not Depending on \mathbb{F}

Definition: The zero-pattern of a vector or a matrix is obtained by replacing all nonzero entries with a \star.

Observation: The probability that M represents G only depends on the zero-pattern of M.

Thus if we let Q_{s} denote the set of all zero-patterns of matrices $M \in \mathbb{F}^{n \times n}$ with $\operatorname{rk}(M) \leq k$ and $\mathrm{s}(M)=s$, then

A Better Proof Not Depending on \mathbb{F}

Definition: The zero-pattern of a vector or a matrix is obtained by replacing all nonzero entries with a \star.

Observation: The probability that M represents G only depends on the zero-pattern of M.

Thus if we let Q_{s} denote the set of all zero-patterns of matrices $M \in \mathbb{F}^{n \times n}$ with $\operatorname{rk}(M) \leq k$ and $\mathrm{s}(M)=s$, then

$$
\mathrm{P}[\operatorname{mr}(G) \leq k] \leq \sum_{s=n^{2} / k}^{n^{2}} \sum_{Z \in Q_{s}} \mathrm{P}\left[\exists M: \begin{array}{c}
Z \text { is the zero-pattern of } M \\
M \text { represents } G
\end{array}\right]
$$

A Better Proof Not Depending on \mathbb{F}

Definition: The zero-pattern of a vector or a matrix is obtained by replacing all nonzero entries with a \star.

Observation: The probability that M represents G only depends on the zero-pattern of M.

Thus if we let Q_{s} denote the set of all zero-patterns of matrices $M \in \mathbb{F}^{n \times n}$ with $\operatorname{rk}(M) \leq k$ and $\mathrm{s}(M)=s$, then

$$
\begin{aligned}
\mathrm{P}[\operatorname{mr}(G) \leq k] & \leq \sum_{s=n^{2} / k}^{n^{2}} \sum_{Z \in Q_{s}} \mathrm{P}\left[\exists M: \begin{array}{c}
Z \text { is the zero-pattern of } M \\
M \text { represents } G
\end{array}\right] \\
& \leq \sum_{s=n^{2} / k}^{n^{2}} \sum_{Z \in Q_{s}}(1 / 2)^{(s-n) / 2}
\end{aligned}
$$

A Better Proof Not Depending on \mathbb{F}

Theorem (Rónyai, Babai, Ganapathy 01): If $\left(f_{1}, \ldots, f_{m}\right)$ is a vector of polynomials over a field \mathbb{F} with degree $\leq d$ in N variables, then the number zero-patterns of this vector as the variables range over all possible elements is at most $\binom{m d+N}{N}$.

A Better Proof Not Depending on \mathbb{F}

Theorem (Rónyai, Babai, Ganapathy 01): If $\left(f_{1}, \ldots, f_{m}\right)$ is a vector of polynomials over a field \mathbb{F} with degree $\leq d$ in N variables, then the number zero-patterns of this vector as the variables range over all possible elements is at most $\binom{m d+N}{N}$. Let M be a "nice" $n \times n$ matrix of rank k. Then there are k linearly independent rows and columns that uniquely determine it. These rows and columns have $\approx 2 k s / n$ nonzero entries. Call these entries E.

A Better Proof Not Depending on \mathbb{F}

Theorem (Rónyai, Babai, Ganapathy 01): If $\left(f_{1}, \ldots, f_{m}\right)$ is a vector of polynomials over a field \mathbb{F} with degree $\leq d$ in N variables, then the number zero-patterns of this vector as the variables range over all possible elements is at most $\binom{m d+N}{N}$. Let M be a "nice" $n \times n$ matrix of rank k. Then there are k linearly independent rows and columns that uniquely determine it. These rows and columns have $\approx 2 k s / n$ nonzero entries. Call these entries E.
Claim: Each entry of M is a polynomial of degree $\leq k+1$ in the variables of E.

A Better Proof Not Depending on \mathbb{F}

Theorem (Rónyai, Babai, Ganapathy 01): If $\left(f_{1}, \ldots, f_{m}\right)$ is a vector of polynomials over a field \mathbb{F} with degree $\leq d$ in N variables, then the number zero-patterns of this vector as the variables range over all possible elements is at most $\binom{m d+N}{N}$. Let M be a "nice" $n \times n$ matrix of rank k. Then there are k linearly independent rows and columns that uniquely determine it. These rows and columns have $\approx 2 k s / n$ nonzero entries. Call these entries E.

Claim: Each entry of M is a polynomial of degree $\leq k+1$ in the variables of E.
Thus we have n^{2} polynomials of degree $\leq k+1$ in $2 k s / n$
variables, so

$$
\left|Q_{s}\right| \leq\binom{ n}{k}^{2}\binom{k n}{k s / n}^{2}\binom{n^{2}(k+1)+2 k s / n}{2 k s / n}
$$

A Better Proof Not Depending on \mathbb{F}

$$
\left|Q_{s}\right| \leq\binom{ n}{k}^{2}\binom{k n}{k s / n}^{2}\binom{n^{2}(k+1)+2 k s / n}{2 k s / n}
$$

A Better Proof Not Depending on \mathbb{F}

$$
\begin{aligned}
\left|Q_{s}\right| & \leq\binom{ n}{k}^{2}\binom{k n}{k s / n}^{2}\binom{n^{2}(k+1)+2 k s / n}{2 k s / n} \\
& \leq n^{2 k}(k n)^{2 k s / n}\left(n^{2}(k+1)+2 k s / n\right)^{2 k s / n}
\end{aligned}
$$

A Better Proof Not Depending on \mathbb{F}

$$
\begin{aligned}
\left|Q_{s}\right| & \leq\binom{ n}{k}^{2}\binom{k n}{k s / n}^{2}\binom{n^{2}(k+1)+2 k s / n}{2 k s / n} \\
& \leq n^{2 k}(k n)^{2 k s / n}\left(n^{2}(k+1)+2 k s / n\right)^{2 k s / n} \\
& \leq n^{2 k s / n}\left(n^{2}\right)^{2 k s / n}\left(n^{3}+2 n^{2}\right)^{2 k s / n}
\end{aligned}
$$

A Better Proof Not Depending on \mathbb{F}

$$
\begin{aligned}
\left|Q_{s}\right| & \leq\binom{ n}{k}^{2}\binom{k n}{k s / n}^{2}\binom{n^{2}(k+1)+2 k s / n}{2 k s / n} \\
& \leq n^{2 k}(k n)^{2 k s / n}\left(n^{2}(k+1)+2 k s / n\right)^{2 k s / n} \\
& \leq n^{2 k s / n}\left(n^{2}\right)^{2 k s / n}\left(n^{3}+2 n^{2}\right)^{2 k s / n} \\
& \leq\left(3 n^{6}\right)^{2 k s / n}
\end{aligned}
$$

A Better Proof Not Depending on \mathbb{F}

$$
\begin{aligned}
\left|Q_{s}\right| & \leq\binom{ n}{k}^{2}\binom{k n}{k s / n}^{2}\binom{n^{2}(k+1)+2 k s / n}{2 k s / n} \\
& \leq n^{2 k}(k n)^{2 k s / n}\left(n^{2}(k+1)+2 k s / n\right)^{2 k s / n} \\
& \leq n^{2 k s / n}\left(n^{2}\right)^{2 k s / n}\left(n^{3}+2 n^{2}\right)^{2 k s / n} \\
& \leq\left(3 n^{6}\right)^{2 k s / n} .
\end{aligned}
$$

Thus $\mathrm{P}[\operatorname{mr}(G) \leq k] \leq \sum_{s=n^{2} / k}^{n^{2}} \sum_{Z \in Q_{s}}(1 / 2)^{(s-n) / 2}$

A Better Proof Not Depending on \mathbb{F}

$$
\begin{aligned}
\left|Q_{s}\right| & \leq\binom{ n}{k}^{2}\binom{k n}{k s / n}^{2}\binom{n^{2}(k+1)+2 k s / n}{2 k s / n} \\
& \leq n^{2 k}(k n)^{2 k s / n}\left(n^{2}(k+1)+2 k s / n\right)^{2 k s / n} \\
& \leq n^{2 k s / n}\left(n^{2}\right)^{2 k s / n}\left(n^{3}+2 n^{2}\right)^{2 k s / n} \\
& \leq\left(3 n^{6}\right)^{2 k s / n} \dot{n}^{2}
\end{aligned}
$$

Thus $\mathrm{P}[\operatorname{mr}(G) \leq k] \leq \sum_{s=n^{2} / k}^{n^{2}} \sum_{Z \in Q_{\mathrm{s}}}(1 / 2)^{(s-n) / 2}$

$$
\leq \sum_{s=n^{2} / k}^{n^{2}}\left(3 n^{6}\right)^{2 k s / n}(1 / 2)^{(s-n) / 2}
$$

A Better Proof Not Depending on \mathbb{F}

$$
\begin{aligned}
\left|Q_{s}\right| & \leq\binom{ n}{k}^{2}\binom{k n}{k s / n}^{2}\binom{n^{2}(k+1)+2 k s / n}{2 k s / n} \\
& \leq n^{2 k}(k n)^{2 k s / n}\left(n^{2}(k+1)+2 k s / n\right)^{2 k s / n} \\
& \leq n^{2 k s / n}\left(n^{2}\right)^{2 k s / n}\left(n^{3}+2 n^{2}\right)^{2 k s / n} \\
& \leq\left(3 n^{6}\right)^{2 k s / n}
\end{aligned}
$$

Thus $\mathrm{P}[\operatorname{mr}(G) \leq k] \leq \sum^{\dot{n}^{2}} \sum(1 / 2)^{(s-n) / 2}$

$$
\begin{aligned}
& \leq \sum_{s=n^{2} / k}^{n^{2}}\left(3 n^{6}\right)^{2 k s / n}(1 / 2)^{(s-n) / 2} \\
& =o(1)
\end{aligned}
$$

if we take $k=\Theta(n / \log n)$.

A Better Proof Not Depending on \mathbb{F}

Claim: Each entry of M is a polynomial of degree $\leq k+1$ in the variables of E.

A Better Proof Not Depending on \mathbb{F}

Claim: Each entry of M is a polynomial of degree $\leq k+1$ in the variables of E.

Proof: Suppose the first k rows and columns of M are linearly independent, and let C be the matrix consisting of these columns.

A Better Proof Not Depending on \mathbb{F}

Claim: Each entry of M is a polynomial of degree $\leq k+1$ in the variables of E.

Proof: Suppose the first k rows and columns of M are linearly independent, and let C be the matrix consisting of these columns.
Thus for any column v of M, there exists a vector x of length k such that $C x=v$.

A Better Proof Not Depending on \mathbb{F}

Claim: Each entry of M is a polynomial of degree $\leq k+1$ in the variables of E.

Proof: Suppose the first k rows and columns of M are linearly independent, and let C be the matrix consisting of these columns.
Thus for any column v of M, there exists a vector x of length k such that $C x=v$.

Now let C^{\prime}, v^{\prime} be obtained by keeping only the first k rows of C, v respectively, so that $C^{\prime} x=v^{\prime}$.

A Better Proof Not Depending on \mathbb{F}

Claim: Each entry of M is a polynomial of degree $\leq k+1$ in the variables of E.

Proof: Suppose the first k rows and columns of M are linearly independent, and let C be the matrix consisting of these columns.
Thus for any column v of M, there exists a vector x of length k such that $C x=v$.

Now let C^{\prime}, v^{\prime} be obtained by keeping only the first k rows of C, v respectively, so that $C^{\prime} x=v^{\prime}$.
Note that all entries of C^{\prime}, v^{\prime} lie in E.

A Better Proof Not Depending on \mathbb{F}

Claim: Each entry of M is a polynomial of degree $\leq k+1$ in the variables of E.

Proof: Suppose the first k rows and columns of M are linearly independent, and let C be the matrix consisting of these columns.
Thus for any column v of M, there exists a vector x of length k such that $C x=v$.
Now let C^{\prime}, v^{\prime} be obtained by keeping only the first k rows of C, v respectively, so that $C^{\prime} x=v^{\prime}$.
Note that all entries of C^{\prime}, v^{\prime} lie in E.
Cramer's rule: If C_{i}^{\prime} is the matrix obtained by replacing the i-th column of C^{\prime} by v^{\prime}, then $x_{i}=\operatorname{det}\left(C_{i}^{\prime}\right) / \operatorname{det}\left(C^{\prime}\right)$.

A Better Proof Not Depending on \mathbb{F}

Correct Claim: Each entry of $\operatorname{det}\left(C^{\prime}\right) M$ is a polynomial of degree $\leq k+1$ in the variables of E.

Proof: Suppose the first k rows and columns of M are linearly independent, and let C be the matrix consisting of these columns.
Thus for any column v of M, there exists a vector x of length k such that $C x=v$.
Now let C^{\prime}, v^{\prime} be obtained by keeping only the first k rows of C, v respectively, so that $C^{\prime} x=v^{\prime}$.
Note that all entries of C^{\prime}, v^{\prime} lie in E.
Cramer's rule: If C_{i}^{\prime} is the matrix obtained by replacing the i-th column of C^{\prime} by v^{\prime}, then $x_{i}=\operatorname{det}\left(C_{i}^{\prime}\right) / \operatorname{det}\left(C^{\prime}\right)$.

Concluding Remarks

Concluding Remarks

- Note that our result applies to other problems in which one represents graphs via polynomial relations, such as unit distance graphs, or graphs of touching spheres.

Concluding Remarks

- Note that our result applies to other problems in which one represents graphs via polynomial relations, such as unit distance graphs, or graphs of touching spheres.
- Nelson recently showed that the zero-pattern bound of Rónyai, Babai, and Ganapathy holds for all fields simultaneously and this can be used to show that for the random graph, the minrank over all fields is $\Theta(n / \log n)$ with high probability.

Concluding Remarks

- Note that our result applies to other problems in which one represents graphs via polynomial relations, such as unit distance graphs, or graphs of touching spheres.
- Nelson recently showed that the zero-pattern bound of Rónyai, Babai, and Ganapathy holds for all fields simultaneously and this can be used to show that for the random graph, the minrank over all fields is $\Theta(n / \log n)$ with high probability.
- Haviv used the methods of Golovnev, Regev, and Weinstein to randomly construct graphs with large minrank and such that their complement does not contain a copy of some H.

Concluding Remarks

- Note that our result applies to other problems in which one represents graphs via polynomial relations, such as unit distance graphs, or graphs of touching spheres.
- Nelson recently showed that the zero-pattern bound of Rónyai, Babai, and Ganapathy holds for all fields simultaneously and this can be used to show that for the random graph, the minrank over all fields is $\Theta(n / \log n)$ with high probability.
- Haviv used the methods of Golovnev, Regev, and Weinstein to randomly construct graphs with large minrank and such that their complement does not contain a copy of some H.

Done!

