

SMALL CODES

By: Igor Balla

Definition: A collection of vectors v_1, \ldots, v_n on the unit sphere in \mathbb{R}^d with the property that $\langle v_i, v_j \rangle \leq \alpha$ for all $i \neq j$, is called a spherical α -code.

Problem: Determine $M(d, \alpha)$, the maximum size of a spherical α -code in \mathbb{R}^d .

Earliest work: By the botanist Tammes in 1930, in the context of studying the arrangements of pores of pollen grains

Equivalent to the question of packing spherical caps of fixed radius on a sphere.

What is known?

Theorem (Rankin 1955):
$$\begin{cases} \frac{-1}{\alpha} + 1 & \text{if } -1 \leq \alpha \leq \frac{-1}{d} \\ d + 1 & \text{if } \frac{-1}{d} \leq \alpha < 0 \end{cases}$$

$$2d & \text{if } \alpha = 0$$

Equivalent formulation: $\rho(d,n)=\min\{\alpha:M(d,\alpha)\geq n\}$, which Rankin's result determines for all $n\leq 2d$. In particular, $\rho(d,2d)=0$.

Question (Bukh and Cox 2020): For a fixed positive k, how does $\rho(d,2d+k)$ depend on d?

Theorem (Bukh and Cox 2020): If d is sufficiently large relative to k, then $\Omega\left(\frac{k}{d^2}\right) \leq \rho(d, 2d+k) \leq O\left(\frac{\sqrt{k}}{d}\right)$.

New results

Theorem (B.): $\rho(d, 2d + k) \ge \Omega\left(\frac{k^{1/3}}{d}\right)$.

Corollary (B.): If k is fixed, then $\rho(d, 2d + k) = \Theta(1/d)$ as $d \to \infty$.

Corollary (B.): If $0 \le \alpha \ll d^{-2/3}$ as $d \to \infty$, then $M(d,\alpha) = (2+o(1))d$.

Binary codes

Definition: Let $A_q(d,s)$ be the maximum size of a q-ary code with block length d and minimum Hamming distance s.

Theorem (Plotkin 1960): $A_2(d, d/2) \le 2d$ with equality if there exists a Hadamard matrix of order d.

Conjecture (Tietäväinen 1980): If $j \ll d^{1/3}$, $A_2(d,d/2-j) \leq O(d)$.

Corollary (B.): If $j \ll d^{1/3}$, $A_2(d, d/2 - j) \leq (2 + o(1))d$.

Corollary (B.): If $j \ll d^{1/3}$, then for infinitely many d, we have $A_2(d,d/2-j)=(2+o(1))d$.

Theorem(Sidelnikov 1971): For infinitely many d, there exists $j = \Theta\left(d^{1/3}\right)$ such that $A_2\left(d,d/2-j\right) \geq \Omega\left(d^{4/3}\right)$.

q-ary codes and set-coloring Ramsey numbers

Definition: Let R(q;d,s) be the minimum number of vertices of a complete graph such that if each of its edges receives s colors out of a universe of d colors, then there exists a set of q vertices all of whose edges share a color.

Fix the threshold $s = \left(1 - \frac{1}{q}\right)d$.

Theorem (Conlon, Fox, He, Mubayi, Suk, Verstraëte 2022 & Conlon, Fox, Pham, Zhao 2023): If $j \ll s$, then

$$A_q(d, s - j) + 1 \le R(q + 1; d, s - j) \le (1 + o(1))A_q(d, s - O(j)).$$

Corollary (B.): If $j \ll d^{1/3}$, then $A_q\left(d,s-j\right) \leq (2+o(1))(q-1)d$.

Theorem (Mackenzie and Seberry 1988): For all $d \ge q$, $A_q(d,s) \le qd$ with equality if d,q are powers of the same prime.

Proofs

Theorem (B.): $\rho(d, 2d + k) \ge \Omega\left(\frac{k^{1/3}}{d}\right)$.

Ideas behind the proof: Consider n=2d+k unit vectors $v_1,\ldots,v_n\in\mathbb{R}^d$ with the property that $\langle v_i,v_j\rangle\leq \alpha$ for all $i\neq j$.

Their Gram matrix $M(i,j) = \langle v_i, v_j \rangle$ has rank at most d and $\operatorname{tr}(M) = n$.

Lets make our life simpler: Imagine that all inner products were positive. Then the off-diagonal entries of M are at most α^2 , so it must be close to the identity matrix and hence must have large rank!

Theorem: For any symmetric matrix M, we have $\operatorname{tr}(M)^2 \leq \operatorname{rk}(M)\operatorname{tr}(M^2)$.

Proofs

Theorem: For any symmetric matrix M, we have $\operatorname{tr}(M)^2 \le \operatorname{rk}(M)\operatorname{tr}(M^2).$

But of course life is not so simple. The negative inner products could be VERY negative.

Idea: Use the positive semidefiniteness of M ($x^\intercal Mx \ge 0$) to gain control over the squares of the negative inner products.

Lemma 1: Fix
$$i$$
 and let $\gamma(i) = \sum_{j:\langle v_i, v_j \rangle < 0} - \langle v_i, v_j \rangle$. Then

$$\sum_{j:\langle v_i,v_j\rangle<0}\langle v_i,v_j\rangle^2\leq 1+\alpha\gamma(i)^2.$$

$$\sum_{x(j)=\begin{cases} -\langle v_i,v_j\rangle & \text{if }\langle v_i,v_j\rangle<0\\ 1& \text{if }j=i\\ 0& \text{otherwise} \end{cases}$$
 Lemma 2:
$$\sum_{i=1}^n\gamma(i)^2\leq O\left(\alpha^2n^3\right).$$

$$x(j)=\begin{cases} -\gamma(j) & \text{if }-\gamma(j)\geq 2\alpha n\\ 2\alpha n & \text{otherwise} \end{cases}$$

$$x(j) = \begin{cases} -\gamma(j) & \text{if } -\gamma(j) \ge 2\alpha n \\ 2\alpha n & \text{otherwise} \end{cases}$$

Unanswered questions

• We showed that if d is sufficiently large relative to k, then $\Omega\left(\frac{k^{1/3}}{d}\right) \leq \rho(d, 2d+k) \leq O\left(\frac{\sqrt{k}}{d}\right)$. What is the correct dependence on k?

• We showed that if $j \ll d^{1/3}$, then for infinitely many d, we have $qd \leq A_q(d,(1-1/q)d-j) \leq (2+o(1))(q-1)d$. What is the correct dependence on q for $q \geq 3$?

